概统 | 一图总结特殊积分之伽马函数

本文介绍了伽马分布及其在概率论中的应用,特别指出指数分布和卡方分布是伽马分布的特例。伽马函数作为伽马分布的基础,其定义、性质和重要公式被详细阐述,强调了理解和记忆一张助学脚本图的重要性,尤其对于考研备考者而言。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伽玛分布(Gamma Distribution)是概统中的一种连续概率函数,对考研来说有若干值得一记的结论。“指数分布”和“χ2分布”都是伽马分布的特例。


 

一、伽马分布的定义

 

指数分布,它是统计等第1件独立事件到来的拖延时间,而伽马分布是统计第α件:

伽马分布比指数函数多了个形状参数α,这个α=1时伽马分布退化为指数分布。

伽马分布的期望和方差就是对应的指数分布期望、方差乘α,至于伽马分布特征函数我们不用管它。

而当α=n/2、β=1/2时,伽马分布退化为卡方分布。

 

二、伽马函数的我们需要记住的定义、性质

由伽马分布的概率密度函数,联系伽马函数的定义:

伽马函数又被称为欧拉第二积分,而欧拉第一积分是贝塔函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值