- 博客(5)
- 收藏
- 关注
原创 ML算法基础-SVM
SVM-统计学习基础一开始讲解了最小间距超平面:所有样本到平面的距离最小。而距离度量有了函数间隔和几何间隔,函数间隔与法向量www和bbb有关,www变为2w2w2w则函数间距变大了,于是提出了几何距离,就是对www处理,除以∣∣w∣∣||w||∣∣w∣∣,除以向量长度,从而让几何距离不受影响。但是支持向量机提出了最大间隔分离超平面,这似乎与上面的分析相反,其实这个最大间隔是个什么概念呢?通过...
2020-05-02 11:38:16 465
原创 ML算法基础-条件随机场
未完占坑条件随机场条件随机场是一种无向图模型,且相对于深度网络有非常多的优势,因此现在很多研究者结合条件随机场(CRF)与深度网络获得更鲁棒和可解释的模型。假设我们有两个相同的骰子,但是其中的一个是公平的,每个点数出现的概率相同;另一个骰子则被做了手脚,数字 6 出现的概率为 80%,而数字 1-5 出现的概率都为 4%。如果我给你一个 15 次投掷骰子的序列,你能预测出我每次投掷用的是哪一...
2020-04-29 23:58:17 514
原创 ML算法基础—EM算法
EM算法是机器学习十大算法之一,它很简单,但是也同样很有深度,简单是因为它就分两步求解问题,E步:求期望(expectation)M步:求极大(maximization)概率模型有时候既含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计方法估计模型参数,但是当模型含有隐变量时,就不能简单的使用这些方法,EM算法就是含...
2020-04-26 23:02:18 937
原创 ML算法基础-朴素贝叶斯
先占个坑,笔记未整理完Content相关概念生成模型判别模型先验概率,后验概率与条件概率贝叶斯决策理论下溢问题如何解决相关概念生成模型生成模型:在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。它给观测值和标注数据序列指定一个联合概率分布。在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),...
2020-04-23 23:54:51 392
原创 ML算法基础-线性回归
这里写自定义目录标题线性回归新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入线性回归你好! 这是你第一次使用...
2020-04-21 11:33:52 438
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人