【重磅】Python版《统计学习导论》来啦!附代码链接!

点击上方,选择星标置顶,不定期资源大放送

阅读大概需要5分钟

Follow小博主,每天更新前沿干货

《统计学习导论》很经典,但用的是 R 语言,没关系,这里有份 Python 版习题实现。

斯坦福经典教材《The Element of Statistical Learning》(简称 ESL)被称为频率学派的统计学习「圣经」,由三位统计学大师——Trevor Hastie、Robert Tibshirani、Jerome Friedman 共同完成。这本书介绍了神经网络、支持向量机、分类树和 boosting、图模型、随机森林、集成方法、Lasso 最小角度回归和路径算法、非负矩阵分解和谱聚类等各类机器学习算法,可以帮助读者了解机器学习算法全貌。

但对于刚入门的小白来说,把这本经典教材啃下来难度还是相当大的,因为书中有大量的公式、矩阵推导,总长度达到 700 多页。因此,Trevor Hastie 等人又写了一本入门级的《Introduction to Statistical Learning with R(统计学习导论:基于 R 应用)》(简称 ISL),帮助更多的人尽快上手。ISL 弱化了数学推导的细节,更注重方法的应用,相当于 ESL 的导读版,在入门读者中很受欢迎。

但美中不足的是,书中的练习是用 R 语言来实现的,这对于主要使用 Python 语言的机器学习研究者来说不太友好。

为了克服这一障碍,有人尝试用 Python 语言解决了书里的所有概念、应用练习,并将其上传到了 GitHub。

GitHub 链接:https://github.com/hardikkamboj/An-Introduction-to-Statistical-Learning

除了练习之外,他还提供了书中某些话题的 Python 教程并重制了一些图表。

作者表示,完成这项工作并不简单,需要做很多研究工作,书中也可能存在纰漏。

和原书对应,作者给出的 Python 解决方案正文也分为以下九章:

  • 统计学习

  • 线性回归

  • 分类

  • 重采样方法

  • 线性模型选择与正则化

  • 非线性模型

  • 基于树的方法

  • 支持向量机

  • 无监督学习

每章至少包含两部分:应用问题和概念问题,对应书中两种不同的练习题。

第四章的「应用问题」部分。

如果你正在读这本书或者想重新做一下书里的练习,可以参考这份 Python 版资料,也可以跟着教材的配套视频边学边做。

视频链接:https://www.bilibili.com/video/BV11t411A7Ym

参考链接:https://zhuanlan.zhihu.com/p/27556007

重磅!DLer-计算机视觉交流2群已成立!

大家好,这是DLer-计算机视觉微信交流2群!首先非常感谢大家的支持和鼓励,我们的计算机视觉交流群正在不断扩大人员规模!希望以后能提供更多的资源福利给到大家!欢迎各位Cver加入DLer-计算机视觉微信交流大家庭 。

本群旨在学习交流图像分类、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。希望能给大家提供一个更精准的研讨交流平台!!!

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

???? 长按识别添加,即可进群!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值