编辑:深度学习技术前沿
作者:Evans
转载请注明来源!
【导读】2017年,BAT各大巨头纷纷跑马圈地,建立了号称“企业级”,“专注于研究”的AI Lab, 现在2021年了,这些AI Lab现状如何呢?有哪些问题值得深思?下面精选了一些知乎上的回答!分享给大家!
作者:花花
链接:https://www.zhihu.com/question/476541860/answer/2033466285
核心矛盾:国内各大厂对AI Lab的定位不清晰现状:定位不清,内外界压力大,夹缝中求生存,又要科研又要落地,处境尴尬
突然提这个问题,应该是看到最近字节跳动 李磊离开AI Lab 吧,那回顾一下:
字节AI Lab 马维英 离职
滴滴AI Lab 叶杰平 离职
腾讯AI Lab 张潼 离职
快手Y-Lab,号称要对标Deepmind,如今架构调整 → Y-Tech
回报越大,困难就越大,高投入的同时也是高风险,Deepmind,OpenAI 这样的模式在国内并不合适,大厂AI Lab开始的旗号大多是不做业务,只做基础研究和技术积累,但时间长了高层看不到烧钱带来的直接价值,落地压力,内外界多方压力,很容易就产生动摇。资本家追求的是金钱,科学家追求的是学术,组织架构调整,业务调整,离职,再正常不过了。
总结如下:
博二兔不得一兔
又要马儿跑又要马儿不吃草
作者:findyi
链接:https://www.zhihu.com/question/476541860/answer/203491918
达摩院半死不活、腾讯优图沦落为内部算法外包、好未来AI Lab负责人离职、字节ai lab变成中台、百度AI Lab在andrew离职后,一蹶不振.....
一句话总结:这些大厂的AI Lab基本名存实亡。
中国目前这些互联网巨头的尿性,说白了为了抢小商贩卖菜的生意可以打的头破血流却又不亦乐乎,你让它做点底层创新,那跟要弄死它一样痛苦。
这些巨头的决策者天天盯的是GMV是利润是增长,前段时间风靡一时个个跑来弄ai lab,真实的算盘恐怕是提升在招聘市场的美誉度,让自己打扮得更像一家技术公司。
但普天下也就在中国,能听到让AI Lab自负盈亏的惊人论调(马老板的言论),这不是滑天下之大稽吗?什么都用盈利来考量,你还做什么底层突破。
让我说,AI Lab这种事,全中国可能没几家公司能指望上,看来看去,也就华为这种如果下决心攻这个方向有戏,但华为的战略目标依然是通讯底层,在这个方向华为是不计成本的投入。
指望这些互联网巨头,真的够呛,不要对它们抱有任何幻想。
一个个千亿美金的商业巨无霸,连小鱼小虾也不放过,抄袭、山寨、剽窃简直是家常便饭,天天惦记着弄死小创业公司,摘取胜利果实才是它们最擅长的事情。
AI Lab是科技底层,是和5G、自动驾驶一个级别的创新方向,这些山寨巨头们自然不愿意持续投入。
看看美国的科技巨头,不太会跟小公司挣得你死我活,谷歌、亚马逊等更多是合作收购。
同时他们在科技底层创新这条路上走得很远。大洋彼岸的马斯克正在把科幻世界中的想象一步步变成事实:电动汽车、火箭和星际探索、太阳能、超级高铁。
亚马逊的贝佐斯不断深入技术创新、产品创新缔造了电商新业态和云计算这个产业。
乔布斯曾凭一己之力把全人类带进了移动互联网,创造了黄金十年。
真是,人比人,气死人,,,,
作者:moneydog
链接:https://www.zhihu.com/question/476541860/answer/2035394748
只能说名存实亡了,AI LAB这个词是注定了与中国互联网这个词不匹配的。
首先我们来看一下国内LAB之前是怎么考核绩效的。据我所知就是每年需要发一定数量的paper,顶会发了几篇,顶刊又有几篇。不过,AI这玩意发顶会,对我来说当然很难,对大佬来说不就是分分钟(夸张的修辞手法,程度副词)的事情吗?手动狗头。我依稀记得某年拜读了国内某知识图谱知名大佬连续发的三篇顶会,实质上就是把损失函数的正则化项变了变。。搞了三篇论文,且不论是否在水论文,就这种情况,AI LAB的考核就没有特别大的作用。
然后,第二点,就是绩效很多都是一年考核的,这也是个深坑!有啥重大研究是按年为单位的,不都是几年几年吗?虽然的确会有很多东西的确是天才灵光一闪,但是想要一年搞出东西,我真觉得太难了,那为了完成绩效,哪怕是大佬也会选择更轻松的方式吧。。。
所以,然后AI LAB似乎发现了这些问题,慢慢地,公司高层干脆直接不说你们是来搞研究的了。必须为业务服务,更多情况下就是为盈利服务了。那。。。这时候,就是我认为的AI LAB真正的消失的标志。因为整个公司的基调都这么定下来,那纯理论研究就更难在公司进行下去了。为业务服务最最最关键的问题就是,模型、算法在为特定数据服务了,追求与业务相关,那模型泛化能力怎么都会弱点。以前我还挺羡慕公司的人的,手上那么多数据,随便玩。现在就完全不羡慕了,那哪是玩,是在挣钱。。。
哈哈哈哈哈,可能是我矫情了,就是看自己怎么想吧,我内心也觉得如果自己搞个模型能影响公司上百万的GMV,其实也不错呀。。。不过,光论AI LAB而言,还是多搞搞理论研究怎么都要好点吧?不过,资本不允许呀,资本给你投资哪是让你搞研究的,是搞钱的!
最后,我想再说两句,想着能进AI LAB的那些大佬,AI LAB曾经也是自己可望不可即的人,甚至我当时找工作的时候都说AI LAB都说以后不会要硕士了,(我自己是知道有些硕士是有多牛的)那这些硕士都不要的情况下,能进的博士百分之95都是AI届数一数二的牛人吧,这些牛人却一直在为资本搞算法模型,心里也觉得好可惜。
话说回来,我一个小菜鸡为啥天天去想那些年薪百万的AI LAB的大佬的生活呢?多言了多言了。。。
作者:匿名用户
链接:https://www.zhihu.com/question/476541860/answer/2034545505
1) 国内lab如果以论文来说,近几年非常好,无论是数量还是质量都有了突飞猛进的提升,和五年前完全不可同日而语。虽然最好的论文还和世界有差距,也仍然没有类似bert、transformer这种对学术圈有着巨大贡献的东西,但有意思的论文也层出不穷。
2)从落地来说,我觉得其他答主说的都有问题。ailab的设立初衷就不应该是落地,要不然和业务组的研究小team没有区别,总有一天会被卷死。业务组有钱有人有卡,好落地的直接能给你干的亲妈都不认识。
3) 如果以deepmind和openai为榜样,国内lab最大的问题是没有 aim high 。解决的还是计算机小领域一亩三分地的问题,机器翻译bleu、图像识别准确度、以及一些直接应用解决传统行业的外包问题。现在更需要deepmind alphafold这种工作,但当然他也非常难。不过如果只看当下明确小问题,肯定没法做moonshot的项目。
最后,当今的research工作越来越从单兵作战转向团队作战,可以看看deepmind和openai有名的论文作者数目。同时也对研究组领导的资源调度和组织能力提出了更多的挑战,如果一个组又512个卡,8个研究员做8件事,肯定不如一起做一件事。但一起做最后的桃子又不好分。这种种的问题都制约了ailab的发展。
作者:自动驾驶拖拉机
链接:https://www.zhihu.com/question/476541860/answer/2033889387
各大厂的AI LAB徒有虚表,对外算法工程师及什么科学家,对内算法外包;主要是由于这些原因造成:
1.企业的核心是什么,赚钱,但是大部分的AI Lab都是花钱的,不会产生直接收益,对公司来说都是间接收益,比如企业影响力、对人才的吸应力、技术储备、技术落地产品,但是这些没有一个确切的收益数据,所以公司的第一印象就是这是个“败家玩意”。
2.既然AI LAB不赚钱,那么公司给AI lab的资源就会变少,比如项目经费,员工数量,员工工资和职级,就比如华为的天才少年有几个去了中央研究院了吗?比如秦通,钟钊等,研究院养不起,最适合搞研究的没去研究院。
3.还有就是国内最常见的AI LAB的技术不知道给谁用,AI lab和产品部门合作难,最终变成研究院和产品部门变成竞争关系,例如达摩院把菜鸟给合并,然后竞争不过的,就乖乖做算法外包,求着产品部门大爷落个地。
4.国内对AI LAB的定位失败,本来AI LAB干的是长期的活,还面临着失败的风险,但是考核制度却时刻要求落地,研究人员还有勇气拿自己的饭碗去挑战高难度的研究吗?研究人员的双手双脚被KPI拷者,然后只能做一些短平快的项目,最终和国外实验室越差越远,然后老板结果导向一看,AI LAB不行,压缩资金投入,减少人员投入,加大KPI考核,然后恶性循环。
5.一个没有钱,即要求落地,又要求创新的AI LAB凭什么能留得住那些学术大佬,人家找个学校当教授不好吗?既能搞学术又能赚大钱,比如清华的汪玉教授,名利双收。
推荐阅读
重磅!DLer-计算机视觉&Transformer群已成立!
大家好,这是计算机视觉&Transformer论文分享群里,群里会第一时间发布最新的Transformer前沿论文解读及交流分享会,主要设计方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、视频超分、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。
进群请备注:研究方向+学校/公司+昵称(如Transformer+上交+小明)
???? 长按识别,邀请您进群!