马里兰大学招收机器学习及计算机安全方向博士生 | 2023 秋季

来源:机器之心

学校简介

马里兰大学 - The University of Maryland, College Park,简称 UMD,是计算机研究顶级大学之一。CS 综合排名各大榜单平均前 14,参考 open ranking 总结的 US News 和 csrankings 等数据。据 csrankings,马里兰大学计算机安全研究方向排名第 7,AI 研究方向排名第 11。在 UMD 这两个研究方向均设立了 Center: Maryland Cybersecurity Center (MC2) 和 Center for Machine Learning。参与 Center 的活动可以和志同道合的同学们一起做科研。

11ef567316fd7bd7a7ffe609cc128aa6.png

马里兰大学位于 College Park,距美国首府华盛顿特区市中心 11 公里。很多学生和老师住在 DC 市区,College Park,Silver Spring 及附近其他区域。学校附近有地铁站方便出行。华盛顿特区是美国最干净的城市之一。在马里兰大学学习日常生活便利,文化生活丰富。

导师简介

陈一征博士将于 2023 年 8 月加入马里兰大学计算机系。她于 2017 年获得佐治亚理工大学博士学位,毕业后在百度、哥伦比亚大学、加州大学伯克利分校担任过研究员。

f4c2e9a640c20af42e31db529fdd3430.png

陈老师的研究方向是机器学习及计算机安全的交叉领域,侧重于应用机器学习解决计算机安全问题,改进机器学习算法在对抗环境中的有效性、安全性、可信度。安全应用的例子包括,用机器学习有效检测恶意程序、找漏洞、检测新网络攻击,用机器学习提高人工软件分析的效率,让人工智能和安全分析员更好得交互。陈老师的研究成果主要发表在安全领域及人工智能领域的顶级会议,并与工业界在恶意软件检测、AI for code、AI for security analyst 等方面有广泛合作。

博士学习是寻找学生和导师的共同爱好去做研究。陈老师会根据每个学生的兴趣及长处找到合适的研究项目。此外,陈老师非常注重教育,培养学生能力培养,及学生未来规划。

招生要求

  • 具备良好的数理和编程基础

  • 有计算机安全背景,上过安全入门课程,有动手实践经验

  • 有人工智能应用能力,比如会用 PyTorch, TensorFlow

  • 努力、自律

  • 有科研经历

申请方式

官方申请流程和截止日期(12 月 16 日)请参考:https://www.cs.umd.edu/grad/catalog。请在申请材料中表明加入陈老师实验室的意愿。

有意者可在此填写表格 https://bit.ly/yizhengresearch,然后邮件与陈老师联系。

  • 个人网站:https://surrealyz.github.io/

  • 邮箱:yzchen@umd.edu

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

c014bc0713e7ffd2aff742e00014d0a5.jpeg

👆 长按识别,邀请您进群!

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
内容概要:本文深入介绍了HarmonyOS文件系统及其在万物互联时代的重要性。HarmonyOS自2019年发布以来,逐步覆盖多种智能设备,构建了庞大的鸿蒙生态。文件系统作为其中的“数字管家”,不仅管理存储资源,还实现多设备间的数据协同。文章详细介绍了常见的文件系统类型,如FAT、NTFS、UFS、EXT3和ReiserFS,各自特点和适用场景。特别强调了HarmonyOS的分布式文件系统(hmdfs),它通过分布式软总线技术,打破了设备界限,实现了跨设备文件的无缝访问。此外,文章对比了HarmonyOS与Android、iOS文件系统的差异,突出了其在架构、跨设备能力和安全性方面的优势。最后,从开发者视角讲解了开发工具、关键API及注意事项,并展望了未来的技术发展趋势和对鸿蒙生态的影响。 适合人群:对操作系统底层技术感兴趣的开发者和技术爱好者,尤其是关注物联网和多设备协同的用户。 使用场景及目标:①理解HarmonyOS文件系统的工作原理及其在多设备协同中的作用;②掌握不同文件系统的特性和应用场景;③学习如何利用HarmonyOS文件系统进行应用开发,提升跨设备协同和数据安全。 阅读建议:本文内容详实,涵盖了从基础概念到高级开发技巧的多个层次,建议读者结合自身需求,重点关注感兴趣的部分,并通过实践加深理解。特别是开发者可参考提供的API示例和开发技巧,尝试构建基于HarmonyOS的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值