个人简介
李萌于2022年7月加入北京大学人工智能研究院和集成电路学院,任助理教授(研究员),博士生导师。加入北京大学前,他曾任职于世界最大社交媒体公司Meta(原Facebook)的虚拟现实和增强现实实验室,任技术主管和资深工程师(Staff Research Scientist),主导在增强现实场景中的深度学习加速研究和产品化。
李萌于2018年和2013年分别在美国德州大学奥斯汀分校和北京大学获得博士和学士学位。李萌在国际顶级会议、期刊(包括ICML、NeurIPs、CVPR、DAC、ICCAD、ISCA,TCAD等)发表文章60余篇,博士毕业论文被Springer出版社出版,Google Scholar总引用3400余次,H-index 24,I10-Index 42,并于2017年和2018年分别获得IEEE HOST和ACM GLSVLSI的会议最佳论文。此外,李萌还获得国家青年高层次人才计划(海外)资助、欧洲设计自动化协会最佳博士论文、ACM学生科研竞赛总决赛第一名(并受邀参加图灵奖颁奖典礼)、德州大学Margarida Jacome杰出博士论文等奖项。
他的研究兴趣集中于安全、高效的多模态人工智能加速算法和系统,即通过神经网络、加速器硬件以及软件栈等的协同设计和优化,提升人工智能系统的训练和推理能效和安全性。
个人主页:mengli.me
实习生招生简介
1.实验室招收大一、大二、大三本科生以及研究生阶段的实习生、访问学者、博士后,同时招收2024级博士生。实验室与国内外工业界、学术界联系紧密,欢迎读博和出国的同学考虑。
2.要求学生有计算机、人工智能、集成电路、数学等相关背景,有扎实的数学和编程功底,并且有较强的研究兴趣。
研究课题
推理效率和安全性是制约深度学习在现实场景中应用的重要瓶颈。一方面,随着深度学习精度的提升,深度神经网络计算量和模型参数呈现指数级增长。另一方面,随着深度学习的广泛应用,数据滥用、信息泄露等隐私安全风险显著提升。本实验室聚焦于高效、安全的人工智能算法和系统研究,采用算法、系统和电路跨层级协同设计和优化方法,提升深度学习效率和安全性。具体研究方向包括面向AIoT低功耗平台的高效人工智能,隐私计算中的神经网络-计算协议-加速芯片协同优化等。
我会提供
1.详细的指导,每周至少一次的1v1面谈,小组讨论等
2.与科研方向相关的海外交流机会和业界实习机会
联系方式
请按照下面内容格式发送电子邮件至meng.li@pku.edu.cn
邮件标题:姓名-所在学校/院系-2023年实习申请/博士申请
正文:背景简介,科研项目经历,未来科研计划(可选)
附件:个人简历,成绩单(可选)
推荐阅读
欢迎大家加入DLer-计算机视觉技术交流群!
大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。
进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)
👆 长按识别,邀请您进群!