比赛网址:https://codalab.lisn.upsaclay.fr/competitions/17638
论文链接:https://arxiv.org/abs/2402.07220
项目主页:https://lixinustc.github.io/projects/KVQ/
CVPR NTIRE 2024链接:https://cvlai.net/ntire/2024/
中国科学技术大学智能媒体计算实验室(IMCL)联合快手视频技术团队在NTIRE2024 (CVPR 2024 Workshop)上举办首届短视频质量评价学术竞赛,欢迎大家参赛。
CVPR NTIRE Workshop (New Trends in Image Restoration and Enhancement workshop and challenges on image and video processing) 是极具影响力的图像和视频增强处理领域的国际学术研讨会,通常包括视觉信号增强、修复、质量评价等比赛内容,对于推动视觉信号处理的发展发挥着重要的作用。
短视频平台,如快手、抖音等,已经成为一种新兴的、不可替代的主流媒体平台。短视频的创作模式具备用户友好型的特点、以及多种多样的创作模式,极大丰富了人们的生活。然而,多样的内容生成模式和复杂的处理流程,给短视频的质量评估带来了重大挑战。因此,如何有效衡量短视频的主观质量成为影响短视频质量发展的一个重要问题。为了推进短视频质量评价的进展,我们建立了第一个大型KVQ短视频质量评价数据集,旨在帮助相关质量评价算法的开发。与传统的视频数据集相比 我们的KVQ数据集具有以下的特点和优势:(i) 独特的应用场景;(ii)多种多样的内容生成模式和创作内容;(iii)复杂的视频处理流程;(iv)独特的评分策略,即绝对质量分数和细粒度视频对rank打分的结合。数据集具体采集流程如下图:
KVQ数据集一共包含用户上传以及处理后的短视频共计4200个,这些数据由快手短视频平台中的9个主要内容场景组成,包括风景、人群、人、食物、肖像、计算机图形(称为CG)、带文字视频、舞台及夜间。这些内容几乎覆盖了所有现有的创作模式和场景,并且每个类别的内容的比例都满足了实际的短视频平台在线统计量。
在比赛过程中,数据集按照内容以7:1:2的形式划分为训练、验证和测试集。比赛结果将综合PLCC、SROCC、较难同源样本间的Rank准确度和非同源样本间的准确度综合排序。
在测试阶段取得较优成绩的队伍将被邀请提交NTIRE Workshop论文。参与测试团队将有机会共同参与挑战报告的撰写。与此同时,比赛将为获胜团队将提供比赛奖励和证书(具体见后续公布的NTIRE官方信息),欢迎大家扫码进入比赛交流群。