从矩阵对角化到斐波那契数列的解析式

考虑递归定义的数列
{ a n = a n − 1 + a n − 2 n ≥ 3 a n = 1 n = 1 , 2 \left\{\begin{matrix}a_n=&a_{n-1}+a_{n-2}&n\geq3\\a_n=&1&n=1,2\\\end{matrix}\right. {an=an=an1+an21n3n=1,2
将上述数列延拓到 a 0 a_0 a0,可以得到 a 0 = a 2 − a 1 = 0 a_0=a_2-a_1=0 a0=a2a1=0,这个后面会用到。
n ≥ 2 n\ge2 n2时,可以用传递矩阵表示为
( a n + 1 a n ) = ( 1 1 1 0 ) ( a n a n − 1 ) \begin{pmatrix} a_{n+1}\\ a_n \end{pmatrix} = \begin{pmatrix} 1 & 1\\ 1&0 \end{pmatrix} \begin{pmatrix} a_n\\ a_{n-1} \end{pmatrix} (an+1an)=(1110)(anan1)

( a n + 1 a n ) = ( 1 1 1 0 ) n ( a 1 a 0 ) \begin{pmatrix} a_{n+1}\\ a_n \end{pmatrix} = \begin{pmatrix} 1 & 1\\ 1&0 \end{pmatrix}^n \begin{pmatrix} a_1\\ a_{0} \end{pmatrix} (an+1an)=(1110)n(a1a0)

A = ( 1 1 1 0 ) A=\begin{pmatrix} 1 &1 \\ 1&0 \end{pmatrix} A=(1110)
虽然 A n A^n An可以在 O ( log ⁡ ( n ) ) O(\log(n)) O(log(n))时间内计算完成,但是我们希望更快。
现在我们先把矩阵对角化,分解为 A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1的形式,其中 Λ \Lambda Λ是对角阵, P P P是特征向量阵,通过Mathematica可计算

P=Transpose[Eigenvectors[A]]

得到
P = ( 1 + 5 2 1 − 5 2 1 1 ) P= \begin{pmatrix} \frac{1+\sqrt{5}}{2}& \frac{1-\sqrt{5}}{2}\\ 1 & 1 \end{pmatrix} P=(21+5 1215 1)
从而
Λ = P − 1 A P = ( 1 + 5 2 0 0 1 − 5 2 ) \Lambda= P^{-1}AP= \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix} Λ=P1AP=(21+5 00215 )
对角化之后, A n A^n An就有了显式的计算公式,
( a n + 1 a n ) = A n ( a 1 a 0 ) = ( P Λ P − 1 ) n ( a 1 a 0 ) = P Λ n P − 1 ( a 1 a 0 ) = P Λ n P − 1 ( 1 0 ) \begin{align} \begin{pmatrix} a_{n+1}\\ a_n \end{pmatrix} = A^n \begin{pmatrix} a_1\\ a_{0} \end{pmatrix} =(P\Lambda P^{-1})^n \begin{pmatrix} a_1\\ a_0 \end{pmatrix} =P \Lambda^n P^{-1} \begin{pmatrix} a_1\\ a_0 \end{pmatrix} =P \Lambda^n P^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{align} (an+1an)=An(a1a0)=(PΛP1)n(a1a0)=PΛnP1(a1a0)=PΛnP1(10)
其中
P Λ n P − 1 = Λ = P − 1 A P = ( 1 + 5 2 1 − 5 2 1 1 ) ( 1 + 5 2 0 0 1 − 5 2 ) n ( 1 + 5 2 1 − 5 2 1 1 ) − 1 = ( 2 − 1 − n ( − ( 1 − 5 ) 1 + n + ( 1 + 5 ) 1 + n ) 5 − ( 1 2 ( 1 + 5 ) ) n ( − 1 + ( 1 2 ( − 3 + 5 ) ) n ) 5 − ( 1 2 ( 1 − 5 ) ) n + ( 1 2 ( 1 + 5 ) ) n 5 ( − 1 + 5 ) ( 1 2 ( 1 + 5 ) ) n + ( 1 2 ( 1 − 5 ) ) n ( 1 + 5 ) 2 5 ) P\Lambda^n P^{-1}= \Lambda= P^{-1}AP= \begin{pmatrix} \frac{1+\sqrt{5}}{2}& \frac{1-\sqrt{5}}{2}\\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^n \begin{pmatrix} \frac{1+\sqrt{5}}{2}& \frac{1-\sqrt{5}}{2}\\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{2^{-1-n} \left(-\left(1-\sqrt{5}\right)^{1+n}+\left(1+\sqrt{5}\right)^{1+n}\right)}{\sqrt{5}} & -\frac{\left(\frac{1}{2} \left(1+\sqrt{5}\right)\right)^n \left(-1+\left(\frac{1}{2} \left(-3+\sqrt{5}\right)\right)^n\right)}{\sqrt{5}} \\ \frac{-\left(\frac{1}{2} \left(1-\sqrt{5}\right)\right)^n+\left(\frac{1}{2} \left(1+\sqrt{5}\right)\right)^n}{\sqrt{5}} & \frac{\left(-1+\sqrt{5}\right) \left(\frac{1}{2} \left(1+\sqrt{5}\right)\right)^n+\left(\frac{1}{2} \left(1-\sqrt{5}\right)\right)^n \left(1+\sqrt{5}\right)}{2 \sqrt{5}} \\ \end{pmatrix} PΛnP1=Λ=P1AP=(21+5 1215 1)(21+5 00215 )n(21+5 1215 1)1= 5 21n((15 )1+n+(1+5 )1+n)5 (21(15 ))n+(21(1+5 ))n5 (21(1+5 ))n(1+(21(3+5 ))n)25 (1+5 )(21(1+5 ))n+(21(15 ))n(1+5 )
代入 ( 1 ) (1) (1)式得,
a n = ( 1 2 ( 5 + 1 ) ) n − ( 1 2 ( 1 − 5 ) ) n 5 a_n=\frac{\left(\frac{1}{2} \left(\sqrt{5}+1\right)\right)^n-\left(\frac{1}{2} \left(1-\sqrt{5}\right)\right)^n}{\sqrt{5}} an=5 (21(5 +1))n(21(15 ))n

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值