题目
给定一个
m x n
二维字符网格board
和一个字符串单词word
。如果word
存在于网格中,返回true
;否则,返回false
。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例 1:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true
示例 2:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
输出:true
示例 3:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
输出:false
解答
算法核心思想
这个算法采用了回溯法与深度优先搜索(DFS)相结合的策略:
-
从每个单元格出发:尝试以矩阵中的每一个单元格作为单词的起点
-
递归探索四个方向:对于每个匹配的字符,继续向上下左右四个方向探索
-
标记已访问:避免重复使用同一个单元格
-
回溯恢复状态:当一条路径不匹配时,回退并尝试其他路径
DFS 的详细执行流程:
-
终止条件检查:
-
如果当前字符匹配且是单词的最后一个字符,返回
true
(找到完整匹配) -
如果当前字符不匹配,返回
false
(这条路径无效)
-
-
标记已访问:
-
保存当前单元格的值到
temp
-
将当前单元格标记为
undefined
(表示已访问,防止重复使用)
-
-
递归搜索四个方向:
-
检查每个方向是否越界
-
如果没有越界,则递归调用
dfs
,index + 1
表示处理单词的下一个字符 -
如果任一方向返回
true
,则立即返回true
(找到匹配)
-
-
回溯恢复:
-
如果四个方向都没有找到匹配,恢复当前单元格的原始值
-
返回
false
表示这条路径无效
-
var exist = function (board, word) {
// 获取矩阵的行数和列数
let row = board.length
let col = board[0].length
// 辅助函数:检查坐标是否越界
const crossBorder = (x, y) => {
return x < 0 || x >= row || y < 0 || y >= col
}
// 深度优先搜索函数
const dfs = (i, j, index) => {
// 基本情况1:找到完整匹配(当前字符匹配且是单词最后一个字符)
if (board[i][j] === word[index] && index === word.length - 1) {
return true
}
// 基本情况2:当前字符不匹配
if (board[i][j] !== word[index]) {
return false
}
// 保存当前字符值并标记为已访问(设置为undefined)
let temp = board[i][j]
board[i][j] = undefined
// 向四个方向递归搜索:
// 1. 检查是否越界
// 2. 递归调用dfs,index+1表示处理下一个字符
if (!crossBorder(i - 1, j) && dfs(i - 1, j, index + 1)) return true // 上
if (!crossBorder(i + 1, j) && dfs(i + 1, j, index + 1)) return true // 下
if (!crossBorder(i, j - 1) && dfs(i, j - 1, index + 1)) return true // 左
if (!crossBorder(i, j + 1) && dfs(i, j + 1, index + 1)) return true // 右
// 回溯:如果四个方向都没有找到匹配,恢复当前单元格的原始值
board[i][j] = temp
// 返回 false 表示这条路径无效
return false
}
// 遍历矩阵中的每个单元格作为起点
for (let i = 0; i < row; i++) {
for (let j = 0; j < col; j++) {
if (dfs(i, j, 0)) { // 从单词的第一个字符开始搜索
return true
}
}
}
return false
};