LeetCode 热题 100 - 堆 - 前 K个高频元素 - javascript

题目

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按任意顺序返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

解答

这一题可以在LeetCode 热题 100 - 堆 - 数组中的第K个最大元素 - javascript的基础上进行进一步的编写。

  • 用map统计每个元素出现的次数。key为元素,value为出现次数。
  • 然后将map中的key按照其value进行构建小顶堆(堆中元素个数为k)。最后返回该小顶堆就可以。

需先了解的知识点:

  • 大顶堆:任何一个节点的左右子节点都比该节点的值小。
  • 小顶堆:任何一个节点的左右子节点都比该节点的值大。
  • 对于一个节点索引为i,它的父节点的索引为Math.floor((i-1)/2)或者Math.floor(i/2)-1,它的左子节点索引为2i+1,右子节点索引为2i+2

算法思路

  1. 统计频率:使用 Map 统计每个数字出现的频率。

  2. 特殊情况处理:如果不同数字的个数 ≤ K,直接返回所有数字。

  3. 构建最小堆:维护一个大小为 K 的最小堆,堆顶是当前 K 个高频元素中频率最小的元素。

  4. 遍历剩余元素

    • 如果当前元素的频率 > 堆顶元素的频率,替换堆顶并调整堆。

    • 否则,跳过该元素。

  5. 返回堆中的元素:最终堆中存储的就是前 K 个高频元素。


示例分析

输入

nums = [1,1,1,2,2,3], k = 2

步骤

  1. 统计频率

    • map = {1:3, 2:2, 3:1}

  2. 初始化堆

    • 先填充 heap = [1, 2](前 K 个元素)。

    • 调用 buildHeap 调整堆:

      • 1(频率=3)和 2(频率=2)比较,2 更小,堆顶是 2

  3. 遍历剩余元素

    • 3(频率=1)和堆顶 2(频率=2)比较,3 频率更低,跳过。

  4. 返回堆

    • heap = [1, 2](频率最高的两个元素)。

var topKFrequent = function (nums, k) {
    // 1. 使用Map统计每个数字出现的频率
    let map = new Map();
    for (let num of nums) {
        if (map.has(num)) {
            // 如果数字已存在,频率+1
            map.set(num, map.get(num) + 1);
        } else {
            // 新数字,初始化频率为1
            map.set(num, 1);
        }
    }

    // 2. 特殊情况处理:如果不同数字数量 ≤ k,直接返回所有key
    if (map.size <= k) {
        return [...map.keys()];
    }

    // 3. 初始化最小堆(用于存储前K个高频元素)
    let heap = [];
    let i = 0; // 计数器

    // 4. 遍历Map中的每个数字及其频率
    map.forEach((frequency, num) => {
        if (i < k) {
            // 4.1 先填充堆到k个元素
            heap.push(num);
            // 当堆填满k个元素时,构建最小堆
            if (i === k - 1) buildHeap(heap, map, k);
        } else if (frequency > map.get(heap[0])) {
            // 4.2 如果当前数字频率 > 堆顶元素频率
            // 替换堆顶元素(移除最小频率元素)
            heap[0] = num;
            // 从堆顶开始调整堆
            heapify(heap, map, k, 0);
        }
        // 增加i
        i++;
    });

    // 5. 最终堆中存储的就是前K个高频元素
    return heap;
};

// 构建小顶堆
function buildHeap(heap, map, k) {
    // 堆大小为1时无需调整
    if (k === 1) return;

    // 从最后一个非叶子节点开始,向前逐个堆化
    for (let i = Math.floor(k / 2) - 1; i >= 0; i--) {
        heapify(heap, map, k, i);
    }
}

// 调整堆为小顶堆
function heapify(heap, map, k, i) {
    while (true) {
        let minIndex = i; // 假设当前节点是最小频率的节点

        // 如果左子节点存在且频率更小,更新minIndex
        if (2 * i + 1 < k && map.get(heap[2 * i + 1]) < map.get(heap[minIndex])) {
            minIndex = 2 * i + 1;
        }

        // 如果右子节点存在且频率更小,更新minIndex
        if (2 * i + 2 < k && map.get(heap[2 * i + 2]) < map.get(heap[minIndex])) {
            minIndex = 2 * i + 2;
        }

        // 如果最小频率节点不是当前节点
        if (minIndex !== i) {
            // 交换当前节点与最小频率节点
            [heap[i], heap[minIndex]] = [heap[minIndex], heap[i]];
            // 继续向下调整
            i = minIndex;
        } else {
            // 当前节点已经是最小频率节点,调整结束
            break;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值