LeetCode 热题 100 - 动态规划 - 完全平方数 - javascript

题目

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

解答

算法思路

  1. 定义状态dp[i]表示组成数字i所需的最少完全平方数个数

  2. 初始条件

    • dp[0] = 0(组成0需要0个数)

    • 其他位置初始化为Infinity(表示暂时无法组成)

  3. 状态转移

    • 遍历所有可能的完全平方数i*i(i从1开始,i*i<=n)

    • 对于每个完全平方数,更新它能影响到的所有数字j(从i*i到n,因为只有当目标金额 j ≥ i*i 时,这个平方数才有可能被使用)

    • dp[j] = min(dp[j], dp[j-i*i]+1)含义:比较不适用当前平方和的个数(dp[j]),和使用当前平方和后的个数(即dp[j-i*i]+1

  4. 最终结果dp[n]


算法执行过程示例

以n=12为例:

初始化

dp = [0, ∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞]

i=1 (1²=1)

        更新j=1到12:

        dp = [0,1,2,3,4,5,6,7,8,9,10,11,12]

i=2 (2²=4)

        更新j=4到12:

   dp[4] = min(4, dp[0]+1) = 1
   dp[5] = min(5, dp[1]+1) = 2
   dp[6] = min(6, dp[2]+1) = 3
   dp[7] = min(7, dp[3]+1) = 4
   dp[8] = min(8, dp[4]+1) = 2
   dp[9] = min(9, dp[5]+1) = 3
   dp[10] = min(10, dp[6]+1) = 4
   dp[11] = min(11, dp[7]+1) = 5
   dp[12] = min(12, dp[8]+1) = 3

i=3 (3²=9)

        更新j=9到12:

   dp[9] = min(3, dp[0]+1) = 1
   dp[10] = min(4, dp[1]+1) = 2
   dp[11] = min(5, dp[2]+1) = 3
   dp[12] = min(3, dp[3]+1) = 3

最终结果:dp[12] = 3(4+4+4)

var numSquares = function (n) {
    // 初始化dp数组,全部设为Infinity(不可达)
    const dp = new Array(n + 1).fill(Infinity);
    // 基础情况:组成0需要0个平方数
    dp[0] = 0;

    // 遍历所有可能的平方数基数i(i² <= n)
    for (let i = 1; i * i <= n; i++) {
        // 更新所有能被当前平方数影响的数字j
        for (let j = i * i; j <= n; j++) {
            // 状态转移:比较不使用当前平方数和使用的情况
            dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
        }
    }

    return dp[n]; // 返回结果
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值