- 博客(126)
- 收藏
- 关注
原创 线程池详解
线程池状态与工作原理详解:线程池通过ctl变量存储状态和线程数,包含RUNNING、SHUTDOWN、STOP、TIDYING和TERMINATED五种状态。ThreadPoolExecutor通过七大参数配置核心线程数、最大线程数、任务队列等,任务处理遵循"核心线程→队列→非核心线程→拒绝策略"流程。常见线程池类型如FixedThreadPool和CachedThreadPool各有特点,但需注意OOM风险。建议手动创建线程池,根据任务类型合理配置参数,优先使用有界队列并配合监控机制保
2025-08-22 15:03:38
610
原创 深度理解Seata
Seata AT模式通过两阶段提交实现分布式事务:第一阶段各服务执行本地事务并记录回滚日志(UNDO_LOG);第二阶段根据全局结果决定提交(删除日志)或回滚(执行反向SQL)。该模式利用日志驱动自动补偿,对业务代码侵入低,解决了传统2PC长时间锁资源的问题,但存在脏读可能。其核心思想是"预执行+日志补偿",类比多方线上签约流程,通过自动生成/销毁撤回协议保证事务一致性。
2025-08-21 20:02:42
473
原创 Seata详解
Seata是阿里开源的分布式事务解决方案,核心解决微服务架构下的数据一致性问题。它提供AT、TCC、Saga和XA四种事务模式,其中AT模式最常用,通过全局事务协调器+本地事务补偿实现低侵入性的事务管理。典型应用包括电商下单、金融转账等跨服务操作。Seata优势在于性能较好、自动补偿、多模式支持,但需注意数据库兼容性和性能开销。部署时需要配置事务协调器TC,并在业务方法添加@GlobalTransactional注解即可实现分布式事务管理。
2025-08-21 20:01:21
436
原创 分布式存储详解
分布式存储系统通过分散数据到多台服务器,实现可扩展性、高可用性和持久性,主要分为三类:1)分布式文件/对象存储(如HDFS、Ceph、MinIO)处理非结构化数据;2)分布式数据库(如TiDB、Cassandra、MongoDB)管理结构化/半结构化数据;3)分布式缓存(如Redis Cluster)提供高速读写。关键技术包括数据分片、复制和一致性协议(如Raft)。选型需根据业务需求,如强一致事务选NewSQL,海量写入选Cassandra,灵活文档选MongoDB。
2025-08-21 20:00:23
285
原创 分布式技术栈的五大核心领域:框架、消息、调度、存储和缓存
分布式技术栈全景涵盖五大核心领域:1.分布式框架(Spring Cloud、Dubbo、gRPC、Service Mesh)提供微服务架构基础;2.消息队列(Kafka、RabbitMQ、RocketMQ)实现系统解耦与异步通信;3.资源调度(Kubernetes、Docker)支撑容器化部署与运维;4.分布式存储(TiDB、Cassandra、Elasticsearch)保障海量数据可靠存储;5.分布式缓存(Redis)提供高性能数据访问。各领域技术协同构建高可用、可扩展的分布式系统,满足现代互联网业务需
2025-08-21 19:57:42
726
原创 分布式技术栈
本文系统梳理了分布式技术栈的核心组件及应用场景。主要内容包括:1)微服务框架(Spring Cloud/Dubbo/Service Mesh);2)通信机制(同步RPC/异步消息队列);3)数据管理(分布式数据库/缓存/搜索);4)服务治理(服务发现/API网关/监控);5)部署运维(Docker/K8s)。文章分析了技术选型的关键因素(团队能力、业务需求、维护成本),并指出分布式开发面临的核心挑战(网络不可靠、数据一致性等)。建议开发者从实际需求出发,循序渐进掌握分布式技术,同时关注云原生等前沿趋势。
2025-08-21 12:14:33
855
原创 MQ:削峰、异步、解耦
消息队列(MQ)的三大核心价值是解耦、异步和削峰填谷。解耦通过让系统A只需发送消息到MQ,系统B/C/D自行订阅,实现系统间松耦合。异步将耗时操作转为后台任务,如用户注册后快速响应,邮件和积分服务后续处理。削峰填谷则通过MQ缓冲突发流量,让后端按能力平稳处理,避免系统崩溃。三者常协同作用,如秒杀场景中,订单系统通过MQ异步通知库存和用户系统,同时实现解耦和流量控制。MQ就像邮局、任务队列和水库,分别承担中介、缓冲和调度角色。
2025-08-21 11:48:18
454
原创 如何使用AOP实现幂等性控制
摘要: 本文介绍了如何利用AOP(面向切面编程)实现API幂等性控制,通过自定义注解@Idempotent和切面IdempotentAspect将幂等校验逻辑与业务代码解耦。核心流程包括:1)通过注解标记需幂等的方法;2)切面从请求头获取Token并在Redis中原子性校验;3)校验通过执行业务,否则抛出异常。方案包含完整代码实现,涵盖自定义注解、AOP切面、异常处理和全局响应封装,只需在Controller方法添加注解即可自动实现幂等控制,提升代码复用性和可维护性。(150字)
2025-08-21 11:23:54
370
原创 API的幂等性问题
摘要:本文提出了一种基于令牌机制的分布式系统API幂等性解决方案。通过生成唯一令牌并在业务请求前校验,确保操作只执行一次。方案包含三个核心步骤:1)客户端获取令牌;2)携带令牌发起请求;3)服务端原子性校验令牌并执行业务。关键点包括令牌有效期管理、原子性操作保证和结果缓存。该方案可有效防止网络异常重试导致的重复支付、重复下单等问题,适用于POST/PATCH等非幂等操作场景。
2025-08-21 11:08:31
246
原创 BERT与Sentence-BERT模型详解
BERT与Sentence-BERT是NLP领域的革命性模型。BERT采用双向Transformer架构,通过MLM和NSP任务预训练,适用于文本分类、NER等任务,但计算句子相似度效率低。Sentence-BERT创新性地使用孪生网络结构和池化方法生成固定维度的句子嵌入,显著提升了语义相似度计算效率,适用于语义搜索、聚类等场景。两者在输出类型、计算复杂度上存在差异:BERT输出token级/句子级向量(O(n²)复杂度),而Sentence-BERT生成固定长度嵌入(O(n)复杂度)。优化方向包括轻量化(
2025-08-14 00:30:00
1698
原创 向量化与相似性搜索全流程详解
向量化与相似性搜索全流程详解 本文详细解析了从数据向量化到相似性搜索的完整技术流程,包含三大核心环节: 向量化:通过深度学习模型(如BERT、ResNet)将文本/图像转化为高维向量,并进行L2归一化处理 索引构建:对比HNSW、IVF-PQ等主流算法,给出Milvus建表示例及参数调优建议 查询处理:演示相似性搜索实现,包括基础搜索和带过滤条件的搜索,分析不同相似度度量方式 文中提供了完整的Python代码示例,涵盖文本/图像向量化、HNSW索引构建和Top-K查询等关键操作,并给出性能优化技巧(降维/量
2025-08-13 00:45:00
613
原创 向量数据库(Vector Database)全面解析
摘要: 向量数据库是专为处理高维向量设计的数据库系统,支持高效存储和检索非结构化数据(如文本、图像嵌入向量)。其核心能力是通过ANN算法(如HNSW、IVF-PQ)实现毫秒级相似性搜索,赋能推荐系统、语义搜索等AI场景。主流工具包括分布式架构的Milvus、轻量级Qdrant、全托管Pinecone及多模态Weaviate。选型需权衡精度、规模与实时性,未来趋势聚焦多模态融合与LLM深度集成。向量数据库正成为AI时代的关键基础设施。
2025-08-12 00:30:00
1006
原创 注意力机制(Attention Mechanism)详解
注意力机制是深度学习中模拟人类选择性关注的核心技术,广泛应用于NLP和CV领域。其核心是通过动态权重分配,使模型聚焦输入数据的关键部分。主要类型包括自注意力、交叉注意力和多头注意力,数学上通过Query-Key-Value计算实现。相比传统RNN,注意力机制能建模长距离依赖、支持并行计算,并提供可解释性。虽然存在计算复杂度高、内存消耗大等局限,但通过位置编码、稀疏注意力等改进持续优化。该技术已推动Transformer、ViT等突破性模型发展,并拓展至多模态、量子计算等前沿方向,成为现代AI的基石。
2025-08-11 00:15:00
786
原创 Scikit-learn、PyTorch与TensorFlow三大机器学习框架深度对比
Python生态系统中,Scikit-learn、PyTorch和TensorFlow是最主流的机器学习框架,它们各自有着明确的定位和优势场景。本文将全面解析这三个框架的核心区别、技术特点、适用场景以及如何在实际项目中协同使用它们。
2025-08-10 00:45:00
940
原创 ResNet 和 CLIP详解
ResNet 和 CLIP 是深度学习领域两个重要的模型,分别代表了计算机视觉和多模态学习的里程碑。下面我将从原理、结构、应用等方面详细解析它们:
2025-08-09 01:00:00
528
原创 VGGish 和 Wav2Vec 的详细解析
VGGish 是由 Google 提出的音频特征提取模型,基于 VGG 网络架构,并在大规模音频数据集 AudioSet(200 万条 YouTube 音频片段)上预训练。其目标是提取 128 维的音频嵌入(embedding),适用于音频分类、事件检测等任务。
2025-08-09 00:45:00
991
原创 HNSW算法详解
HNSW算法解析:分层图结构助力高效近似最近邻搜索 HNSW(Hierarchical Navigable Small World)是一种创新的近似最近邻搜索算法,通过分层图结构实现高效检索。其核心采用"高层导航+底层精确"的双层设计:顶层为稀疏的"高速公路"网络,实现快速区域定位;底层为稠密的"街道网络",确保精确搜索结果。算法通过随机层级分配和动态边连接策略,构建具备"小世界"特性的图结构,在搜索时自上而下逐步逼近目标,最终
2025-08-08 15:53:35
639
原创 IVF-PQ(Inverted File with Product Quantization) 的详细解析
IVF-PQ是一种高效的近似最近邻搜索算法,结合倒排索引和乘积量化技术。倒排索引通过聚类缩小搜索范围,乘积量化压缩向量维度减少内存占用。算法流程包括训练阶段(生成倒排索引和PQ码本)和搜索阶段(先筛选候选簇再快速计算距离)。关键参数如簇数量nlist、探查簇数nprobe和子段数m需要权衡速度与精度。IVF-PQ适合大规模高维数据检索,在图像搜索、推荐系统等场景表现优异,但也存在训练开销大和精度损失的问题。相比HNSW、LSH等方法,它在内存效率和搜索速度间取得了较好平衡。
2025-08-08 15:53:01
670
原创 LSH(Locality-Sensitive Hashing,局部敏感哈希) 的详细解析
文章摘要: LSH(局部敏感哈希)是一种近似最近邻搜索算法,通过哈希函数将相似数据点高概率映射到同一桶中,快速缩小搜索范围。其核心特性是局部敏感性和降维加速,适用于高维数据场景。常见哈希函数包括基于欧氏距离的E2LSH、余弦相似度的SimHash和Jaccard相似度的MinHash。LSH通过多哈希表构建索引,参数(如哈希位数k、表数量L)需调优以平衡召回率与效率。优势包括理论保证和分布式友好,但存在参数敏感、内存消耗大等局限,广泛应用于文本去重、图像检索等领域。代码示例展示了SimHash的实现,优化技
2025-08-08 15:52:40
813
原创 向量数据库详解:主流产品与使用指南
摘要:本文系统介绍了主流向量数据库及其应用方法,包括Milvus、Chroma、Weaviate、Qdrant和Faiss五大开源产品。详细分析了各数据库特点,并提供了Milvus、Chroma和Weaviate的安装与操作示例代码。文章还阐述了向量数据库在语义搜索、内容推荐等场景的应用,以及选择数据库时需考虑的数据规模、性能需求等关键因素。最后给出了向量维度压缩、索引调优等性能优化建议,为开发者选用向量数据库提供了实用参考。
2025-08-08 15:52:20
562
原创 Spring AI框架深度解析:原理、架构与实战应用
Spring AI框架深度解析摘要: Spring AI是Spring生态系统推出的企业级AI开发框架,为Java开发者提供高效的人工智能集成方案。框架采用分层模块化设计,包含模型交互层、增强能力层、数据处理层和智能体层,支持多模态模型(如GPT、DALL·E等)和RAG系统构建。核心特性包括与Spring生态无缝融合、标准化接口、微服务友好架构和性能优化机制。开发实践涵盖环境配置、依赖管理及功能实现,通过统一API(如ChatClient)简化AI能力集成,支持函数调用和工具扩展。Spring AI突破了
2025-08-07 21:39:21
776
原创 电商系统中人工智能技术的深度应用与原理详解
电商行业已成为人工智能技术应用最广泛、最深入的领域之一。从商品分类到库存管理,从个性化推荐到智能客服,AI技术正在全面重塑电商运营的各个环节。本文将系统性地解析机器学习、深度学习和大模型等技术在电商系统中的具体应用场景、实现原理以及它们之间的协同关系,帮助你构建完整的电商AI知识框架。
2025-08-07 21:15:53
790
原创 Semantic Kernel (Microsoft) 详解:微软认知计算核心框架
微软Semantic Kernel是一个轻量级SDK,用于将大型语言模型与传统编程语言集成。该框架包含核心执行引擎、插件系统、连接器、规划器和记忆系统等关键组件,支持native函数和semantic函数的混合编排。通过Mermaid流程图展示了其架构设计,并提供了C#和Python代码示例演示函数编排、记忆存储等核心功能。文章还探讨了企业知识助手、智能代码生成等高级应用场景,以及性能优化和安全防护策略,展示了如何实现AI与代码的高效协同。
2025-08-07 00:30:01
730
原创 AutoGen 详解:微软多智能体开发框架深度解析
本文深入解析微软AutoGen多智能体开发框架,详细介绍了其核心架构、代理类型、协作系统与高级功能。主要内容包括:1)基础代理(用户代理和助手代理)配置;2)多代理群组聊天实现机制;3)工具调用、代码执行等核心功能;4)典型应用场景如复杂问题解决和AI开发;5)性能优化策略与安全防护体系。文章通过架构图、代码示例和功能矩阵等形式,全面展示了如何利用AutoGen构建复杂的LLM应用工作流,特别适合开发者深入理解这一前沿技术框架。
2025-08-07 00:23:52
1162
原创 LangChain 详解:构建大语言模型应用的全能框架
LangChain是一个用于构建大语言模型(LLM)应用的框架,通过模块化设计简化开发流程。其核心架构包含Model I/O(模型交互)、Retrieval(数据检索)、Agents(自主决策)、Chains(任务编排)、Memory(状态管理)和Callbacks(监控)六大组件。 框架提供标准化接口连接不同LLM,支持提示模板管理和输出解析,并能处理文档加载、分割、向量存储与检索。Chains模块支持多步骤任务流程,而Agents模块则实现工具调用和复杂任务处理。Memory机制管理对话历史和上下文,C
2025-08-07 00:20:09
910
原创 Agent智能体开发详解
Agent(智能体)是能够感知环境、做出决策并执行动作的自主计算实体。随着大语言模型(LLM)的发展,Agent技术正迎来革命性突破。下面我将从基础概念到实践开发全面解析Agent智能体技术。
2025-08-07 00:15:25
308
原创 Prompt 概念深度解析
摘要: Prompt是大语言模型交互的核心指令,通过自然语言引导AI输出。本质上是非编程式指令,包含任务描述、上下文和约束条件。技术层面涉及Token化处理、注意力机制和概率预测。现代Prompt类型包括零样本、少样本、思维链等范式,其设计需遵循4C原则(清晰、简洁、上下文相关、约束明确)。Prompt具有控制生成、提升准确性和任务泛化的技术价值,并推动人机交互革命。未来将向自动化优化、多模态扩展和安全增强方向发展,成为AI时代的新型"编程语言"。
2025-08-06 23:07:16
780
原创 RAG(Retrieval-Augmented Generation)技术详解
摘要: RAG(检索增强生成)技术通过结合信息检索与文本生成,提升大语言模型在知识密集型任务中的表现。其核心流程包括从外部知识库检索相关信息,并基于检索结果生成回答,相比纯LLM具有知识实时性、领域适配性和更高的事实准确性。RAG技术架构包含检索模块(如向量检索)和生成模块,支持多种进阶模式(如多模态RAG、智能体协同检索等)。实践应用中需优化分块策略、检索方法和生成控制,典型场景包括企业知识问答和医疗辅助诊断。当前挑战涉及检索延迟和多跳推理,未来方向聚焦动态检索和轻量化。RAG正成为企业AI应用的核心架构
2025-08-06 23:03:22
780
原创 Prompt Engineering(提示工程)详解
Prompt Engineering(提示工程)详解 提示工程是通过优化输入指令(Prompt)来提升大语言模型(LLM)输出质量的技术,核心在于结构化设计输入文本。其关键要素包括角色定义、任务描述、上下文信息和输出约束,目标为提高准确性、控制格式并适配多任务。主流技术分为基础(如Zero-shot/Few-shot Prompting)和进阶(如Chain-of-Thought推理)方法。优化原则包括明确性、结构化和渐进式提问。实战案例涵盖信息提取和代码生成。未来趋势聚焦多模态输入和自动化优化。掌握提示工
2025-08-06 22:28:19
811
原创 大语言模型(LLM)基本原理与应用全景解析
大语言模型(LLM)技术全景解析:原理、应用与挑战 摘要:本文系统剖析了大语言模型的技术原理与发展历程,重点介绍了基于Transformer的核心架构及其自注意力机制、位置编码等关键技术。文章详细阐述了LLM的两阶段训练范式,包括海量数据预训练和微调优化,并分析了分布式训练、显存优化等前沿技术。在应用层面,展示了LLM在内容创作、知识工作辅助和多模态融合等领域的突破性应用案例。同时,文章也客观指出了当前面临的技术瓶颈(如算力需求、生成质量)和伦理挑战,展望了小型化、多模态融合等未来发展方向。最后提出了开发者
2025-08-06 22:10:37
800
原创 机器学习算法全解:分类、回归、聚类与核心知识体系
本文系统性地介绍了机器学习核心算法体系,包括分类(逻辑回归、SVM、决策树)、回归(线性回归、GBRT)、聚类(K-means、DBSCAN)和降维技术(PCA、t-SNE)。详细讲解了各类算法的数学原理、Python实现和评估指标,并提供了特征工程、超参数优化的实用方法。通过实际应用案例展示了算法选择策略,最后给出针对不同问题的算法选择流程图。文章强调理解算法数学基础与实现细节的重要性,建议从Scikit-learn开始实践,逐步掌握这一AI基石技术。
2025-08-06 21:42:23
781
原创 机器学习(ML)详解:从基础概念到前沿发展
机器学习是人工智能的核心分支,它使计算机系统能够从数据中学习和改进,而无需显式编程。下面我们将从多个维度全面解析机器学习的本质、方法和应用。
2025-08-06 21:19:44
977
原创 生成模型详解:从GAN到扩散模型的创造力模仿革命
生成模型技术革命:从GAN到扩散模型的创造力突破 摘要:本文系统解析了两大主流生成模型技术。GAN通过生成器与判别器的对抗训练实现逼真样本生成,其进化历程包括DCGAN、WGAN到StyleGAN等关键改进。扩散模型则采用逐步加噪和去噪的独特机制,通过DDPM等算法实现高质量生成。文章揭示了这些技术如何对应人类创造力的认知过程,并探讨了跨模态生成、3D内容创建等前沿应用。当前生成模型已实现文本到图像/视频的转换,但与人类创造力相比仍存在意图性和情感表达的差距。未来发展方向包括多模态统一生成、可控创造系统和人
2025-08-06 21:10:52
529
原创 贝叶斯网络详解:模仿人类不确定性推理的概率图模型
贝叶斯网络是一种模拟人类不确定性推理的概率图模型,结合先验知识与新证据进行概率判断。其核心由节点(随机变量)、边(依赖关系)和条件概率表组成,通过精确推理(如变量消除)或近似方法(如MCMC)进行计算。Python的pgmpy等工具可实现网络构建与概率推理。贝叶斯网络在医疗诊断、风险评估等领域应用广泛,与人类推理相比更理性但缺乏直觉速度。当前发展方向包括结构学习算法、深度网络结合及可解释性增强,在因果推断等方面展现出更大潜力。这一技术不仅是构建AI系统的重要工具,也为理解人类认知机制提供了窗口。
2025-08-06 21:05:13
783
原创 强化学习详解:模仿人类试错学习的计算框架
本文系统介绍了强化学习(RL)的基本原理、核心算法及应用前景。强化学习模拟人类试错学习机制,通过马尔可夫决策过程(MDP)框架实现智能体与环境的交互学习。文章详细解析了Q-Learning、策略梯度、演员-评论家等主要算法类别,以及深度强化学习的前沿发展,包括基于模型的方法和多智能体系统。同时探讨了RL在游戏AI、机器人控制等领域的应用及面临的稀疏奖励、样本效率等技术挑战。最后提供了实践建议,包括环境选择、算法路线图和调参技巧,为RL研究与应用提供了系统指南。
2025-08-06 21:00:57
641
原创 记忆模块详解:从LSTM到现代记忆网络的演进
本文系统梳理了深度学习中的记忆模块发展历程。从LSTM的门控机制到现代记忆网络,文章对比了RNN、LSTM、GRU和Memory Network的特性与适用场景,并介绍了神经图灵机、DNC等进阶架构。通过生物记忆系统与人工实现的对应关系分析,揭示了记忆模块的设计原理。文章还包含PyTorch实现示例和性能基准比较,最后展望了脉冲LSTM、树突计算等前沿研究方向,指出记忆模块正推动AI从模式识别向真实理解演进。
2025-08-06 20:55:11
643
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人