【Python机器学习基础教程】第三章第三节:预处理与缩放

预处理与缩放

上一章我们学到,一些算法(如神经网络和 SVM)对数据缩放非常敏感。因此,通常的做法是对特征进行调节,使数据表示更适合于这些算法。通常来说,这是对数据的一种简单的按特征的缩放和移动。下面的代码(图 3-1)给出了一个简单的例子:

不同类型的预处理

在图 3-1 中,第一张图显示的是一个模拟的有两个特征的二分类数据集。第一个特征(x轴)位于 10 到 15 之间。第二个特征(y 轴)大约位于 1 到 9 之间。

接下来的 4 张图展示了 4 种数据变换方法,都生成了更加标准的范围。scikit-learn 中 的 StandardScaler 确保每个特征的平均值为 0、方差为 1,使所有特征都位于同一量级。但这种缩放不能保证特征任何特定的最大值和最小值。RobustScaler 的工作原理与StandardScaler 类似,确保每个特征的统计属性都位于同一范围。但 RobustScaler 使用的是中位数和四分位数 1
,而不是平均值和方差。这样 RobustScaler 会忽略与其他点有很大不
同的数据点(比如测量误差)。这些与众不同的数据点也叫异常值(outlier),可能会给其他缩放方法造成麻烦。

与之相反,MinMaxScaler 移动数据,使所有特征都刚好位于 0 到 1 之间。对于二维数据集来说,所有的数据都包含在 x 轴 0 到 1 与 y 轴 0 到 1 组成的矩形中。

最后,Normalizer 用到一种完全不同的缩放方法。它对每个数据点进行缩放,使得特征向量的欧式长度等于 1。换句话说,它将一个数据点投射到半径为 1 的圆上(对于更高维度的情况,是球面)。这意味着每个数据点的缩放比例都不相同(乘以其长度的倒数)。如果只有数据的方向(或角度)是重要的,而特征向量的长度无关紧要,那么通常会使用这种归一化。

应用数据变换

前面我们已经看到不同类型的变换的作用,下面利用 scikit-learn 来应用这些变换。我们将使用第 2 章见过的 cancer 数据集。通常在应用监督学习算法之前使用预处理方法(比如缩放)。举个例子,比如我们想要将核 SVM(SVC)应用在 cancer 数据集上,并使用MinMaxScaler 来预处理数据。首先加载数据集并将其分为训练集和测试集(我们需要分开的训练集和数据集来对预处理后构建的监督模型进行评估):

对训练数据和测试数据进行相同的缩放

预处理对监督学习的作用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

调参侠鱼尾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值