定积分不等式套路总结

定积分不等式套路总结

摘要:
暴力求导
拆分积分区间
利用泰勒展开
将常数/可导函数变形为定积分
将dx变形为d(x-c)
利用几何意义
利用柯西不等式
几个常用引理

正文:
一、暴力求导

通分后构造新函数求导
[公式][公式]
二、拆分积分区间

引入特殊点拆分
1.最值点
[公式]

2.中值点
[公式]
在这里插入图片描述
依照被积函数的正负拆分区间,使被积函数在区间内不变号
[公式]

三、利用泰勒展开

在积分区间两端点展开
[公式]

在积分区间的中点展开
[公式]

在积分区间内最值点/导数值为0的点展开
先使用中值定理,再在所得到的中值点展开
在函数值为0的点展开
……
四、将常数/可导函数变形为定积分
在这里插入图片描述
(1)
[公式]
(2)
[公式]
结合题设将常数变为某简单函数的积分
(1)在这里插入图片描述
[公式]
(2)
[公式]
[公式]
(此时往往有f©=0的条件)

五、dx [公式] d(x-c)

简化分部积分后得到的项(使其中某一项得0)
[公式]
为后续放缩搭建桥梁
[公式]

六、利用几何意义(多用于凹凸函数)
[公式]

七、利用cauchy不等式
[公式]
[公式]
八、几个常用引理

[公式]
(注意这里 [公式] 不必连续)
[公式]
(积分第二中值定理)
[公式]

九、片末彩蛋=w=
[公式]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值