- 博客(5)
- 收藏
- 关注
翻译 【翻译】神经网络训练方法
训练神经网络的方法引言神经网络训练实际上是抽象泄露神经网络无声无息地训练失败方法1、变成数据大师2、设置端到端的训练/测试流程新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入引言很多人遇到了一个很大的障碍,那就是如何将“
2022-04-02 13:52:31 817
原创 【论文整理】风格迁移中格拉姆矩阵(Gram Matrix)的使用
Gram矩阵在风格迁移中的使用1、格拉姆矩阵的定义2、风格迁移的任务描述3、格拉姆矩阵的使用方法4、以一些论文举例格拉姆矩阵可以起到什么作用5、总结欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导
2022-02-17 00:32:50 7091 1
原创 【图像处理】Python获取图片均值和方差的方法
获取图片均值和方差的方法在域自适应变化中,或者在处理数据集的时候,经常需要对于图像 或者数据集 的均值和方差进行分析通过分析均值、方差,可以比较高效地获得数据分布情况 特别是大数据集因此,在这里记录并且介绍一下图片均值、方差的获取方法,通过一些简单的实验来说明算法和结果。1、基本背景1) 图片的均值、方差一张三通道RGB图片可以表示为 RC*H*W 的一个空间,其中:C 表示通道 ;H 表示图片的长度 ;W 表示图片的宽度可以用一个大小为 I = [C, H, W] 的矩阵来表示这张图片
2021-11-30 16:09:06 8798
原创 Pytorch中获取输入数据的梯度
Pytorch中获取输入数据的梯度在设计算法的时候需要使用输入数据的梯度,但是始终没有提取出来,这里记录一下我解决问题的方法。原理Pytorch中获取数据的梯度是通过autograd.backward()方法来进行自动梯度计算的,在Pytorch官网上有相关的完整教程,我也同时参考了几篇网上的博客,针对其应用方法建立了一个相对完整的认识。官网教程:Pytorch > Docs > Automatic differentiation package - torch.autograd >
2021-11-23 16:16:59 4169 1
原创 Pytorch中Parameter的打印和修改
使用Pytorch中Parameter的打印和修改在实验过程中想要使用梯度方法来修改决策器模型的参数,涉及到参数的修改和一些运算方法的使用,记录一下。Parameter方法参考官网tutorial以及网络上的一些博客,大致了解了Parameter的工作原理官网教程:Pytorch > Docs > torch.nn > Parameter网络博客:简书 > PyTorch里面的torch.nn.Parameter()实验过程简单记录实验步骤和结果:1、首先看一下模型参
2021-11-23 14:16:59 3135
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人