一、定义
二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
这个定义显然是递归形式的,所以咱看上去有点晕,因为自古有“神使用递归,人使用迭代!
二叉树特点
每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。(注意:不是都需要两棵子树,而是最多可以是两棵,没有子树或者有一棵子树也都是可以的。)
左子树和右子树是有顺序的,次序不能颠倒。即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
二叉树的五种基本形态
空二叉树
只有一个根结点
根结点只有左子树
根结点只有右子树
根结点既有左子树又有右子树
斜树
顾名思义,斜树是一定要斜的,但斜也要斜得有范儿,例如:
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
一叶子只能出现在最下一层。
―非叶子结点的度一定是2。
一在同样深度的二叉树中,满二叉树的结点个数一定最多,同时叶子也是最多。
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=i=n)的结点与同样深度的满二叉树中编号为i的结点位置完全相同,则这棵二叉树称为完全二叉树。
完全二叉树的特点有:
一叶子结点只能出现在最下两层。
一最下层的叶子一定集中在左部连续位置。
一倒数第二层,若有叶子结点,一定都在右部连续位置。
一如果结点度为1,则该结点只有左孩子。
—同样结点树的二叉树,完全二叉树的深度最小。
注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
以下这些都不是完全二叉树:
二叉树的性质
二叉树的性质一:在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
一这个性质其实很好记忆,考试的时候懂得画出二叉树的图便可以推出
二叉树的性质二:深度为k的二叉树至多有2^k-1个结点(k>=1)
一这里一定要看清楚哦,是2^k再-1。
二叉树的性质三:对任何一棵二叉树T如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
一这个就比较困难了,需要推导获得
一首先我们再假设度为1的结点数为n1,则二叉树T的结点总数n=n0+n1+n2
一其次我们发现连接数总是等于总结点数n-1,并且等于n1+2*n2
一所以n-1=n1+2*n2
一所以n0+n1+n2-1=n1+n2+n2一最后n0=n2+1
二叉树的性质四:具有n个结点的完全二叉树的深度为[log2n]+1
二叉树的性质五:如果对一棵有n个结点的完全二叉树(其深度为Llog2n]+1)的结点按层序编号,对任一结点i(1<=i<=n)有以下性质:
一如果i = 1,则结点i是二叉树的根,无双亲;如果i > 1,则其双亲是结点[i/2]
一如果2i >n,则结点i无做左孩子(结点i为叶子结点);否则其左孩子是结点2i
一如果2i+1 >n,则结点i无右孩子;否则其右孩子是结点2i+1影
二叉树存储结构
二叉树是一种特殊的树,由天它的特殊性,使得用顺序存储结构或链式存储结构都能够简单实现。
二叉树的顺序存储结构就是用一维数组存储二叉树中的各个结点,并且结点的存储位置能体现结点之间的逻辑关系。
二叉链表
既然顺序存储方式的适用性不强,那么我们就要考虑链式存储结构啦。二叉树的存储按照国际惯例来说一般也是采用链式存储结构的。
二叉树每个结点最多有两个孩子,所以为它设计一个数据域和两个指针域是比较自然的想法,我们称这样的链表叫做二叉链表。