计算机视觉轻量化模型
文章平均质量分 96
这个男人是小帅
求其上,得其中;求其中,得其下,求其下,必败。
展开
-
【Shuffle Net V2】精讲 (5) 【pytorch】完整可运行代码
实际上,代码的核心在于模型架构的实现,尤其是对通道重排 (Channel Shuffle) 和通道分离操作的应用。虽然这些操作在代码层面可能没有显著的亮点,但它们为我们提供了一个简明的实践环境,让我们能够深入理解并应用这些概念。此外,这一部分还有很多值得学习和探索的内容。本章节主要对模型文件的实现以及代码的执行进行了详细解释。对于理解这些操作存在疑问的读者,欢迎通过评论或私信交流和指导。我们鼓励大家积极参与讨论,共同提升在实际应用中的理解与技能。原创 2024-10-27 14:13:51 · 709 阅读 · 0 评论 -
Shuffle Net系列详解 (4) Shuffle Net V2实践部分讲解 for pytorch版本
在之前的论文精讲环节,确实还有许多内容需要进一步深入探讨。如果您对某些部分感兴趣,欢迎随时联系我,我会持续更新以提供更多信息。我真心希望读者能够从中获得收益,这里分享的都是基于个人理解的见解。接下来,我计划跟进一些在小型模型上可以执行的实践代码,旨在帮助读者更深入地理解这些概念。其实我看下来这两个代码模型的主体构建都是很容易看懂的。真正的难点是其整体的训练逻辑的堆积。以及各种各样自己写的小的trick。值得注意的是现阶段新技术的引入有些是可以替换的,各位酌情学习哦。原创 2024-10-12 13:13:27 · 610 阅读 · 0 评论 -
Shuffle Net系列详解 (3) Shuffle Net V1实践部分讲解 for pytorch版本
这段代码所承载的工作量是相当大的,这不仅源于它所处理的问题本身的复杂性,还因为它处理的数据集的规模。然而,尽管模型的整体架构相对简单易懂,但真正需要时间去消化的是,训练过程中展示的各种精细的技巧。这些技巧非常值得学习,希望大家能在本节中尽可能地掌握那些对自己的科研工作有所帮助的方法,以便在科研的旅程中更加顺风顺水。接下来会对将要讲解 ShuffleNet V2,对于那些对此感兴趣的读者,我建议亲自动手实践一下这个实验。原创 2024-10-12 13:13:03 · 810 阅读 · 0 评论 -
Shuffle Net系列详解 (2) Shuffle Net V2论文理论部分详解
当前,神经网络架构设计主要由间接复杂度指标(如 FLOPs)引导。然而,直接指标(例如速度)也依赖于其他因素,比如内存访问成本和平台特性。因此,本工作提议在目标平台上评估直接指标,而不仅仅考虑 FLOPs。基于一系列受控实验,本工作得出了几条高效网络设计的实用指南。据此,我们提出了一种新的架构,称为 ShuffleNet V2。全面的消融实验验证了我们的模型在速度与准确性权衡方面是最先进的。就是提出了新的模型性能很好,并且其不在基于理论层面的复杂度讨论,而是实际应用层面的比较。不玩虚的就是干。原创 2024-10-09 12:24:34 · 930 阅读 · 0 评论 -
Shuffle Net系列详解 (1) Shuffle Net论 V1论文理论部分详解
我们介绍了一种极其效率高的CNN架构,命名为ShuffleNet,该架构专门为计算能力非常有限的移动设备设计(例如,10-150 MFLOPs)。这种新架构利用两种新的操作,即逐点群卷积和通道混洗,大大降低了计算成本,同时保持了准确性。在ImageNet分类和MS COCO目标检测的实验中,ShuffleNet相比其他结构展现出了优越的性能,例如在40 MFLOPs的计算预算下(在计算资源有限的情况下),其在ImageNet分类任务上的top-1错误率(绝对值7.8%)低于最近的MobileNet[12]原创 2024-10-09 12:23:17 · 996 阅读 · 0 评论 -
Mobile net V系列详解 (2) Mobile net V2论文理论部分详解
在这篇论文中,我们描述了一种新的移动架构,它在多个任务和基准测试中提升了移动模型的最先进性能,同时覆盖了不同模型大小的广泛范围。我们还描述了将这些移动模型高效应用于物体检测的新框架,我们称之为SSDLite。此外,我们展示了如何通过深度学习框架DeepLabv3的简化形式(我们称之为Mobile DeepLabv3)构建移动语义分割模型。MobileNetV2基于一种倒置残差结构,在细小的瓶颈层之间建立了快捷连接。中间扩展层使用轻量级深度卷积来过滤特征,作为非线性的来源。原创 2024-09-21 19:53:32 · 1098 阅读 · 0 评论 -
Mobile net V系列详解 (3) 【Mobile net V2】代码可运行【pytroch】
可以看到数据集本身被存放在了三个文件夹下,其主要是花的图片,被分割成了验证集和训练集,模型训练主要就是采用训练集中的数据进行训练,验证集则用来对模型的性能进行测试。为了进一步增强数据集的结构化和规范化,每个图像通常会被放置在代表其类别的文件夹中。这意味着所有同类别的图像会被存放在相同的文件夹里。这样的存放方式不仅使数据集的管理变得简单化,更重要的是,为使用自动化工具提供了便利。例如,图像数据集的这种标准存放形式完美支持了 PyTorch 中的DatasetFolder工具直接进行处理。原创 2024-09-18 21:46:51 · 1087 阅读 · 0 评论 -
Mobile net V系列详解 (1) Mobile net V1论文理论部分详解
MobileNets,用于移动和嵌入式视觉应用。MobileNets 基于一个精简的架构,该架构使用深度可分离卷积来构建轻量级的深度神经网络。原创 2024-09-18 21:45:57 · 890 阅读 · 0 评论