CQF预备知识:一、微积分 -- 1.2.3 绝对值函数详解

文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。

📖 数学入门全解

本系列教程为CQF(国际量化金融分析师证书)认证所需的数学预备知识,涵盖所有需要了解的数学基础知识,旨在帮助读者熟悉核心课程所需的数学水平。

教程涵盖以下四个主题:

  • 微积分
  • 线性代数
  • 微分方程
  • 概率与统计

1.2.3 绝对值函数详解

一、核心定义

  1. 绝对值函数

    符号表示为 ∣ x ∣ |x| x,用于获取一个数的非负值(即与原数距离原点相同的正数)。

    分段定义

    ∣ x ∣ = { x 如果  x ≥ 0 − x 如果  x < 0 |x| = \begin{cases} x & \text{如果 } x \geq 0 \\ -x & \text{如果 } x < 0 \end{cases} x={xx如果 x0如果 x<0

    • x ≥ 0 x \geq 0 x0:绝对值等于原数本身(如 ∣ 5 ∣ = 5 |5| = 5 ∣5∣=5)。
    • x < 0 x < 0 x<0:绝对值等于其相反数(如 ∣ − 5 ∣ = − ( − 5 ) = 5 |-5| = -(-5) = 5 5∣=(5)=5)。
  2. 关键说明

    • 定义中“大多数包含等式在正数范围”指: x ≥ 0 x \geq 0 x0 的条件涵盖了 x = 0 x=0 x=0,确保所有实数均有定义。
    • 无论 x x x 是整数、小数还是负数,绝对值结果始终非负。

二、分段函数的概念

  1. 定义
    分段函数是由多个“子函数”组成的函数,每个子函数仅在特定的 x x x 取值范围内有效。

    • 特点
      • 函数表达式随 x x x 的取值范围改变。
      • 不同区间的定义互斥且全面覆盖所有实数(如绝对值函数覆盖 x ≥ 0 x \geq 0 x0 x < 0 x < 0 x<0)。
  2. 示例对比

    • 线性函数:如 f ( x ) = 2 x f(x) = 2x f(x)=2x,全定义域内表达式相同。
    • 绝对值函数:需根据 x x x 的正负选择对应表达式,是典型的分段函数。

三、几何意义与图像

  1. 几何意义
    绝对值 ∣ x ∣ |x| x 表示数轴上点 x x x 到原点 0 0 0 的距离,因此结果非负。

    • 例如: ∣ − 3.9 ∣ = 3.9 |-3.9| = 3.9 3.9∣=3.9 表示 − 3.9 -3.9 3.9 到原点的距离是 3.9 3.9 3.9
  2. 函数图像

    • 形状:V 形,顶点位于原点 ( 0 , 0 ) (0,0) (0,0)
    • 右半部分 x ≥ 0 x \geq 0 x0):直线 y = x y = x y=x(斜率为 1)。
    • 左半部分 x < 0 x < 0 x<0):直线 y = − x y = -x y=x(斜率为 -1)。
    • 对称性:关于 y 轴对称(见图示)。

四、基本性质与应用

  1. 基本性质

    • 非负性 ∣ x ∣ ≥ 0 |x| \geq 0 x0,且 ∣ x ∣ = 0 |x| = 0 x=0 当且仅当 x = 0 x = 0 x=0
    • 乘法性质 ∣ a ⋅ b ∣ = ∣ a ∣ ⋅ ∣ b ∣ |a \cdot b| = |a| \cdot |b| ab=ab(如 ∣ 2 ⋅ ( − 3 ) ∣ = ∣ 2 ∣ ⋅ ∣ − 3 ∣ = 6 |2 \cdot (-3)| = |2| \cdot |-3| = 6 ∣2(3)=∣2∣3∣=6)。
    • 三角不等式 ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a + b| \leq |a| + |b| a+ba+b(后续课程深入)。
  2. 实际应用

    • 距离计算:如两车相向而行,速度分别为 + 50 +50 +50 km/h 和 − 30 -30 30 km/h,用绝对值比较速率大小。
    • 误差分析:测量误差的绝对值表示实际值与理论值的偏离程度。

五、总结对比

  1. 与线性函数的区别

    • 线性函数:单一表达式,图像为直线。
    • 绝对值函数:分段表达式,图像为折线(V 形),反映“距离”的非负性。
  2. 学习意义

    • 为后续学习不等式(如 ∣ x ∣ < 5 |x| < 5 x<5)、方程(如 ∣ x ∣ = 3 |x| = 3 x=3)及更复杂函数(如分段函数应用题)奠定基础。

本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

船长Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值