文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。
📖 数学入门全解
本系列教程为CQF(国际量化金融分析师证书)认证所需的数学预备知识,涵盖所有需要了解的数学基础知识,旨在帮助读者熟悉核心课程所需的数学水平。
教程涵盖以下四个主题:
- 微积分
- 线性代数
- 微分方程
- 概率与统计
1.2.3 绝对值函数详解
一、核心定义
-
绝对值函数
符号表示为 ∣ x ∣ |x| ∣x∣,用于获取一个数的非负值(即与原数距离原点相同的正数)。
分段定义:
∣ x ∣ = { x 如果 x ≥ 0 − x 如果 x < 0 |x| = \begin{cases} x & \text{如果 } x \geq 0 \\ -x & \text{如果 } x < 0 \end{cases} ∣x∣={x−x如果 x≥0如果 x<0
- 当 x ≥ 0 x \geq 0 x≥0:绝对值等于原数本身(如 ∣ 5 ∣ = 5 |5| = 5 ∣5∣=5)。
- 当 x < 0 x < 0 x<0:绝对值等于其相反数(如 ∣ − 5 ∣ = − ( − 5 ) = 5 |-5| = -(-5) = 5 ∣−5∣=−(−5)=5)。
-
关键说明
- 定义中“大多数包含等式在正数范围”指: x ≥ 0 x \geq 0 x≥0 的条件涵盖了 x = 0 x=0 x=0,确保所有实数均有定义。
- 无论 x x x 是整数、小数还是负数,绝对值结果始终非负。
二、分段函数的概念
-
定义
分段函数是由多个“子函数”组成的函数,每个子函数仅在特定的 x x x 取值范围内有效。- 特点:
- 函数表达式随 x x x 的取值范围改变。
- 不同区间的定义互斥且全面覆盖所有实数(如绝对值函数覆盖 x ≥ 0 x \geq 0 x≥0 和 x < 0 x < 0 x<0)。
- 特点:
-
示例对比
- 线性函数:如 f ( x ) = 2 x f(x) = 2x f(x)=2x,全定义域内表达式相同。
- 绝对值函数:需根据 x x x 的正负选择对应表达式,是典型的分段函数。
三、几何意义与图像
-
几何意义
绝对值 ∣ x ∣ |x| ∣x∣ 表示数轴上点 x x x 到原点 0 0 0 的距离,因此结果非负。- 例如: ∣ − 3.9 ∣ = 3.9 |-3.9| = 3.9 ∣−3.9∣=3.9 表示 − 3.9 -3.9 −3.9 到原点的距离是 3.9 3.9 3.9。
-
函数图像
- 形状:V 形,顶点位于原点 ( 0 , 0 ) (0,0) (0,0)。
- 右半部分( x ≥ 0 x \geq 0 x≥0):直线 y = x y = x y=x(斜率为 1)。
- 左半部分( x < 0 x < 0 x<0):直线 y = − x y = -x y=−x(斜率为 -1)。
- 对称性:关于 y 轴对称(见图示)。
四、基本性质与应用
-
基本性质
- 非负性: ∣ x ∣ ≥ 0 |x| \geq 0 ∣x∣≥0,且 ∣ x ∣ = 0 |x| = 0 ∣x∣=0 当且仅当 x = 0 x = 0 x=0。
- 乘法性质: ∣ a ⋅ b ∣ = ∣ a ∣ ⋅ ∣ b ∣ |a \cdot b| = |a| \cdot |b| ∣a⋅b∣=∣a∣⋅∣b∣(如 ∣ 2 ⋅ ( − 3 ) ∣ = ∣ 2 ∣ ⋅ ∣ − 3 ∣ = 6 |2 \cdot (-3)| = |2| \cdot |-3| = 6 ∣2⋅(−3)∣=∣2∣⋅∣−3∣=6)。
- 三角不等式: ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a + b| \leq |a| + |b| ∣a+b∣≤∣a∣+∣b∣(后续课程深入)。
-
实际应用
- 距离计算:如两车相向而行,速度分别为 + 50 +50 +50 km/h 和 − 30 -30 −30 km/h,用绝对值比较速率大小。
- 误差分析:测量误差的绝对值表示实际值与理论值的偏离程度。
五、总结对比
-
与线性函数的区别
- 线性函数:单一表达式,图像为直线。
- 绝对值函数:分段表达式,图像为折线(V 形),反映“距离”的非负性。
-
学习意义
- 为后续学习不等式(如 ∣ x ∣ < 5 |x| < 5 ∣x∣<5)、方程(如 ∣ x ∣ = 3 |x| = 3 ∣x∣=3)及更复杂函数(如分段函数应用题)奠定基础。
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。