CQF预备知识:二、线性代数 -- 2.2.4 线性方程组的矩阵表示详解

文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。

📖 数学入门全解

本系列教程为CQF(国际量化金融分析师证书)认证所需的数学预备知识,涵盖所有需要了解的数学基础知识,旨在帮助读者熟悉核心课程所需的数学水平。

教程涵盖以下四个主题:

  • 微积分
  • 线性代数
  • 微分方程
  • 概率与统计

2.2.4 线性方程组的矩阵表示详解

一、二元线性方程组的基本解法

考虑含两个未知数 x x x y y y 的方程组:

a x + b y = p c x + d y = q \begin{align*} ax + by &= p \\ cx + dy &= q \end{align*} ax+bycx+dy=p=q

其中 a , b , c , d , p , q a, b, c, d, p, q a,b,c,d,p,q 为已知常数。

求解步骤

  1. 消元法求 x x x
    将第一式乘以 d d d,第二式乘以 b b b,相减消去 y y y

    ( a d − b c ) x = d p − b q (ad - bc)x = dp - bq (adbc)x=dpbq

    a d − b c ≠ 0 ad - bc \neq 0 adbc=0 时,解得:

    x = d p − b q a d − b c x = \frac{dp - bq}{ad - bc} x=adbcdpbq

  2. y y y
    类似地,消去 x x x 可得:

    ( a d − b c ) y = a q − c p (ad - bc)y = aq - cp (adbc)y=aqcp

    解为:

    y = a q − c p a d − b c y = \frac{aq - cp}{ad - bc} y=adbcaqcp

解的存在性与唯一性

  • 唯一解条件:当系数行列式 det ⁡ ( A ) = a d − b c ≠ 0 \det(A) = ad - bc \neq 0 det(A)=adbc=0 时,方程组有唯一解。
  • 无解或多解条件:若 a d − b c = 0 ad - bc = 0 adbc=0,则方程组可能无解或有无穷多解。

二、解的类型分析(案例)

案例1:唯一解
方程组:

x − y = 0 x + y = 2 \begin{align*} x - y &= 0 \\ x + y &= 2 \end{align*} xyx+y=0=2

  • 系数行列式: det ⁡ ( A ) = ( 1 ) ( 1 ) − ( − 1 ) ( 1 ) = 2 ≠ 0 \det(A) = (1)(1) - (-1)(1) = 2 \neq 0 det(A)=(1)(1)(1)(1)=2=0
  • 解: x = 1 , y = 1 x = 1, y = 1 x=1,y=1

案例2:无解
方程组:

x − y = 0 2 x − 2 y = 2 \begin{align*} x - y &= 0 \\ 2x - 2y &= 2 \end{align*} xy2x2y=0=2

  • 系数行列式: det ⁡ ( A ) = ( 1 ) ( − 2 ) − ( − 1 ) ( 2 ) = 0 \det(A) = (1)(-2) - (-1)(2) = 0 det(A)=(1)(2)(1)(2)=0
  • 由第一式得 x = y x = y x=y,代入第二式得 2 x − 2 x = 0 = 2 2x - 2x = 0 = 2 2x2x=0=2,矛盾,故无解。

案例3:无穷多解
方程组:

x − y = 1 2 x − 2 y = 2 \begin{align*} x - y &= 1 \\ 2x - 2y &= 2 \end{align*} xy2x2y=1=2

  • 系数行列式: det ⁡ ( A ) = ( 1 ) ( − 2 ) − ( − 1 ) ( 2 ) = 0 \det(A) = (1)(-2) - (-1)(2) = 0 det(A)=(1)(2)(1)(2)=0
  • 第二式是第一式的两倍,等价于一个独立方程。解集为 { ( x , y ) ∣ x − y = 1 } \{(x, y) \mid x - y = 1\} {(x,y)xy=1}(如 x = 1 , y = 0 x=1,y=0 x=1,y=0; x = 2 , y = 1 x=2,y=1 x=2,y=1 等)。

三、解的类型与方程数量的关系

E E E 为方程个数, n n n 为未知数个数:

  • 欠定系统 E < n E < n E<n):
    方程数不足,存在自由变量,通常有无穷多解。
    :单个方程 x − y = 1 x - y = 1 xy=1 解集为直线。

  • 适定系统 E = n E = n E=n):
    当系数矩阵可逆时,有唯一解;否则无解或无穷多解。

  • 超定系统 E > n E > n E>n):
    方程数过多,通常无解(除非方程间线性相关)。
    :三个方程求两个未知数,几何上要求三条直线交于一点(一般不可能)。

四、矩阵表示与可解性

矩阵形式

( a b c d ) ( x y ) = ( p q ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} (acbd)(xy)=(pq)

简记为:

A x = p A \mathbf{x} = \mathbf{p} Ax=p

其中:

  • A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd) 为系数矩阵
  • x = ( x y ) \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} x=(xy) 为未知向量
  • p = ( p q ) \mathbf{p} = \begin{pmatrix} p \\ q \end{pmatrix} p=(pq) 为常数向量

可解条件
当且仅当 A A A 可逆(即 det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0)时,解可表示为:

x = A − 1 p \mathbf{x} = A^{-1} \mathbf{p} x=A1p

五、推广至N元方程组

对于含 N N N 个未知数的 N N N 个方程:

A x = p A \mathbf{x} = \mathbf{p} Ax=p

  • A A A N × N N \times N N×N 系数矩阵
  • x \mathbf{x} x p \mathbf{p} p N N N 维向量

解的存在唯一性
取决于 A A A 是否可逆(即 det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0)。

六、特殊矩阵结构

  1. 单位矩阵 I n I_n In
    n × n n \times n n×n 方阵,主对角元素为1,其余为0:

    I = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} I= 100010001

    性质:对任意向量 v \mathbf{v} v,有 I v = v I \mathbf{v} = \mathbf{v} Iv=v.

  2. 三对角矩阵
    非零元素仅分布在主对角线及其相邻两条对角线上:

    A = ( a 1 b 1 0 ⋯ 0 c 1 a 2 b 2 ⋱ ⋮ 0 c 2 ⋱ ⋱ 0 ⋮ ⋱ ⋱ a n − 1 b n − 1 0 ⋯ 0 c n − 1 a n ) A = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 \\ c_1 & a_2 & b_2 & \ddots & \vdots \\ 0 & c_2 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & a_{n-1} & b_{n-1} \\ 0 & \cdots & 0 & c_{n-1} & a_n \end{pmatrix} A= a1c100b1a2c20b20an1cn100bn1an

    • 主对角线:元素 a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an
    • 上对角线(超对角线):元素 b 1 , b 2 , … , b n − 1 b_1, b_2, \dots, b_{n-1} b1,b2,,bn1
    • 下对角线(次对角线):元素 c 1 , c 2 , … , c n − 1 c_1, c_2, \dots, c_{n-1} c1,c2,,cn1
      应用:常见于微分方程数值求解(如有限差分法)。

七、线性方程组分类

线性方程组
不相容
相容
无解 E > n
唯一解 E = n
无穷多解 E < n
  • 关键参数
    E E E = 方程个数, n n n = 未知数个数
  • 术语说明
    • 相容:至少存在一组解
    • 不相容:无解
  • 几何意义
    • E = n E = n E=n:超平面交于一点(唯一解)
    • E < n E < n E<n:超平面相交成子空间(无穷多解)
    • E > n E > n E>n:超平面无公共交点(通常无解)

风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

船长Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值