GUI优化工具optimtool

本文详细介绍了数学优化的各种方法,包括无约束优化的fminUnc和fminSearch求解器,约束优化的fmincon求解器,非线性最小二乘优化的lsqnonlin求解器,线性规划的linprog求解器,以及智能优化算法如GA和simulannealbnd。各算法的特点、适用场景和算法细节逐一解析,帮助读者理解并选择合适的优化工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.1无约束优化

1.1.1 Solver  fminUnc求解器

1.1.2 Solver fminSearch求解器

2约束优化

3非线性最小二乘优化

4线性规划

5智能优化算法

5.1 Solver  GA求解器

5.2 Solver simulannealbnd 求解器  


对[x,fval,exitflag,output,lamda] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)的理解

  • x:求解得到的自变量值x
  • fval:求解得到的函数最小值fmin(也可以求最大值,常见做法为函数取负号)
  • exitflag:返回求解结果,成功1失败0
  • output:包含优化过程中的各种输出信息(可用于调试查看)
  • lamda:lamda参数是一个结构体,包含了最优解处的拉格朗日乘子

  • f:自变量的常数
  • A:不等式约束的系数矩阵
  • b:不等式约束的常向量

        A * x <= b

  • Aeq:等式约束的系数矩阵
  • beq:等式约束的常向量

        Aeq * x = beq

  • lb:自变量的下限
  • ub:自变量的上限

        lb<=x<=ub

  • x0:自变量的初始值
  • options:指定优化参数

1.1无约束优化


1.1.1 Solver  fminUnc求解器


    Algorithm算法

  •   Large scale 大规模算法
  •   Medium scale 中等规模算法
  •   Quasi Newton
  •   Trust region

1.1.2 Solver fminSearch求解器


    Algorithm算法

优点

  • 对于非光滑优化问题有较好的求解       eg.f(x) = |(x-1)(x-2)|在两个极小点处一阶导数不连续

2约束优化

 Solver  fmincon求解器
    Algorithm算法

  • Interior point内点算法
  • SQP
  • Active set有效集算法
  • Trust region reflective信赖域反射算法

当选择信赖域反射算法的时候,Linear inequalities、Nonlinear Constraints function 和Derivatives这三个约束输入框都不能用,说明这种算法只能求解含线性等式约束的约束优化问题,而其余两种算法都可以处理非线性约束及不等式约束。

3非线性最小二乘优化

 Solver  lsqnonlin求解器
    Algorithm算法

  • Trust region reflective 信赖域反射算法
  • Levenberg-Marquardt L-M算法

只有信赖域反射算法可以定义自变量上下界约束

4线性规划

Solver  linprog求解器
    Algorithm算法

  • Dual simplex        单纯形算法
  • Interior point legacy

5智能优化算法

5.1 Solver  GA求解器

 Algorithm算法

遗传算法GA,可以求解(无)约束优化问题,而且约束条件可以是非线性的

5.2 Solver simulannealbnd 求解器
  

Algorithm算法

模拟退火算法simulannealbnd,只能求解无约束优化问题

迭代速度比较慢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值