自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 粒子群算法优化方法

粒子群优化算法(particle swarm optimization,PSO)属于进化算法的一种,它源于鸟群捕食的行为研究。基本思想是通过群体中个体之间的协作和信息共享来寻找最优解。在PSO中,每个优化问题的潜在解都是搜索空间中的一只鸟,抽象为粒子,每个粒子都有一个由目标函数决定的适应值(fitness value),以及决定它们飞行的方向和距离。 PSO具有实现容易、精度高、收敛快等优点。 图1 粒子群算法流程图下面是标准粒子群的算法:接下来对粒子群算法的学习因子c1,c2进行

2021-04-12 21:03:02 1447 1

原创 训练神经网络的常用方法之共轭梯度法

共轭梯度法是介于梯度下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,既克服了梯度下降法收敛慢的缺点,又避免了牛顿法需要存储和计算海塞矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。共轭梯度法的迭代公式如下所示:使用共轭梯度法对正定线性方程组进行求解,代码如下所示function [er,k]=ConGra(A)%共轭

2021-02-19 20:21:39 3446 1

原创 训练神经网络的常用方法之梯度下降法

训练神经网络的方法如下所示:(1) traingd:基本梯度下降法,收敛速度比较慢。(2) traingda:自适应学习率的梯度下降法(3) traingdm:带有动量项的梯度下降法, 通常要比traingd 速度快。(4) traingdx: 带有动量项的自适应学习算法, 速度要比traingdm 快。(5) trainrp: 弹性BP 算法, 具有收敛速度快和占用内存小的优点。(6) trainscg: 归一化共轭梯度法(7) trainbfg: BFGS- 拟牛顿法(8) traino

2021-02-09 22:55:33 7095

原创 RBF与BP神经网络的实际案例研究

RBF与BP神经网络的实际案例研究应用实例:基于近红外光谱的汽油辛烷值预测,辛烷值是汽油最重要的品质指标传统的实验室检测方法存在样品用量大、测试周期长和费用高等问题,不适用与生产控制,特别是在线测试。今年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已经广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染、能在线分析,更适合于生产和控制的需要。针对采集得到的60组汽油样品,利用傅立叶近红外变换光谱仪对其扫描,扫描范围为900~1700nm,扫描间隔为2nm

2021-01-19 14:12:50 836

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除