吴恩达深度学习
墨水河刘能
这个作者很懒,什么都没留下…
展开
-
深度学习之MNIST手写数字识别——卷积神经网络训练模型并生成gui窗口进行在线识别之基本知识了解
一 基本知识准备1.卷积(Convolutional)顾名思义,卷积层由一组卷积单元(又称"卷积核")组成,可以把这些卷积单元理解为过滤器,每个过滤器都会提取一种特定的特征对卷积层功能的理解一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。 给定一张输入图片,用一个卷积核去扫这张图,卷积核里面的数就叫权重,这张图每个位置是被同样的卷积核扫的,所以权重..原创 2020-11-01 11:20:35 · 2970 阅读 · 11 评论 -
【吴恩达课后编程作业】Course 5 - 序列模型 - 第三周作业 - 机器翻译与触发词检测
hello,吴恩达老师深度学习的最后一课来啦,参考博客为何宽大佬的https://blog.csdn.net/u013733326/article/details/97619187把自己复现代码遇到的问题记录一下问题一:在代码出现错误TypeError: Calling ‘.seed()’ on instances is deprecated. Use the class method ‘Faker.seed()’ instead.解决办法:将faker版本降低到2.0.0,并重启ju.原创 2020-10-11 17:02:45 · 1016 阅读 · 0 评论 -
吴恩达深度学习 deeplearning.ai (4-4) 编程作业
本文参考何宽大神的博客https://blog.csdn.net/u013733326/article/details/80767079首先先放一下第一个编程作业的代码from keras.models import Sequentialfrom keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenatefrom keras.models import Modelfrom keras.layers..原创 2020-09-28 10:35:34 · 1404 阅读 · 7 评论 -
吴恩达课后编程作业卷积神经网络 - 第四课第一周作业
本文参考何宽大神的文章,https://blog.csdn.net/u013733326/article/details/80086090基于以上的文章加以自己的理解发表这篇博客,希望对大家的学习有所帮助何宽大神的代码使用的是tf1.x,我所用的是tf2.x,一些代码有所改动,希望大家注意1. 神经网络的底层搭建 1.1 - 导入库我们先要引入一些库:import numpy as npimport h5pyimport matplotlib.pyplot as plt原创 2020-08-11 22:25:44 · 5569 阅读 · 17 评论