自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 机器学习2

lmd_s, us = np.linalg.eig(cov_mat) # lmd_s = [入1,入2,入3] ,us = [u1,u2,u3]求出 协方差矩阵 cov_mat,特征值lmd s 和对应的 特征向量us。# m_sample :m个样本, n_feature:n个特征。对 eig_pair 从大到小排序。# 七.将 协方差 矩阵 进行 降维。绑定 特征值 和 特征向量。# 1.计算 每一个 属性的均值。

2023-04-25 10:13:57 45

原创 机器学习2

请利用sklearn中的鸢尾花数据集和SVM算法,并结合网格搜索方法,对数据进行分类。# 2、将鸢尾花数据集分割为训练集(70%)和测试集(30%)# 4、记录最优参数后,重新创建SVM模型,拟合训练数据集。# 3、使用网格搜索交叉验证,获取数据信息。# b)对gamma和C进行调参。# 1、加载鸢尾花数据集。# a)定义SVM分类器。# c)使用5折交叉验证。# 5、打印输出模型得分。# d)拟合训练集数据。# e)打印最优得分。# f)打印最优参数。

2023-04-25 10:12:02 80

原创 机器学习1

print('分类报告',classification_report(test_y.argmax(axis=1),test_w.argmax(axis=1)))print('混淆矩阵',confusion_matrix(test_y.argmax(axis=1),test_w.argmax(axis=1)))# 2.将数据集洗牌(6分),合理分割成训练集和测试集(6分)print('测试集精度',test_score)def G(x,y,lr=0.01,h=5):#h是。

2023-04-21 13:28:28 31

原创 机器学习1

8. 加载数据集ex2data1.txt。# 9. 获取特征和标签(数据预处理)print('测试集准确率:\n',a2)print('训练集准确率:\n',b2)# 2. 定义激活函数(sigmoid)底层。# 12. 计算测试集准确率。# 13. 计算训练集准确率。# 3. 定义逻辑回归预测模型。# 11. 进行模型训练。# 14. 绘制代价曲线。# 6. 定义准确率计算函数。# 5. 定义梯度下降函数。# 7. 定义特征缩放函数。# 4. 定义代价函数。

2023-04-21 13:26:58 31 2

原创 机器学习1

print('测试集的分类报告:\n',classification_report(test_y,s_p))print('测试集的混淆矩阵:\n',confusion_matrix(test_y,s_p))print('模型评估:\n',s_v_m.score(test_x,test_y))print('支持向量的列表:\n',s_v_m.support_vectors_)print('支持向量所属每个类别的个数:\n',s_v_m.n_support_)print('预测值:\n',s_p)

2023-04-21 13:22:12 37 1

原创 机器学习1

9. 分割数据集(训练集和测试集)print('训练集的精度:\n',a1)print('训练集的精度:\n',b1)# 6. 加载数据集data.txt。# 7. 获取特征矩阵和标签矩阵。# 4. 创建精度函数(评估指标)# 13. 输出训练集的精度。# 12. 输出测试集的精度。# 一.使用线性回归底层实现以下试题。# 1. 创建线性模型函数。# 3. 创建梯度下降函数。# 5. 创建特征缩放函数。# 10. 训练模型。# 2. 创建代价函数。

2023-04-21 13:10:07 55 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除