捕食者-被捕食者方程组分析

该博客探讨了捕食者与被捕食者模型,以兔子和狐狸为例,通过离散化微分方程进行数值模拟。博主使用Python实现了最小二乘拟合来解决非逆矩阵问题,并展示了模型的动态平衡状态,讨论了模型的局限性和优化可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

捕食者-被捕食者方程组研究

《python数学实验与建模》中课后习题与代码解读2。

捕食者与被捕食者属于经典生态动力学问题,本次建模问题也是传统模型,并没有进行扩展。

一、问题描述

        假设封闭草原环境下,以兔子x(t)和狐狸y(t)的数量变化作为基本研究对象,x(0)=60,y(0)=60,并且假设只有这两种生物相互影响,没有其它外界影响。通过为期一定时间的观察,兔子与狐狸的基本观测值如下表所示:

        并且已知基本传统模型如下所示,要求根据观测值拟合求出a,b,c,d的值。

二、问题求解

        微分模型对于连续型数据具有意义,但是通过给出的表格数据,可以看出观测值属于离散量。所以可以将微分方程改为差分方程的形式。最终可将方程改写为Ax=b的形式(具体解析可查看司守奎老师的《python数学建模算法与应用》一书)。

求解过程python实现如下所示:

#利用线性最小二乘方法,估算整体的最小值
import numpy as np
t0 = np.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值