红黑树是一棵特殊的二叉查找树,它在每个节点增加了一个存储位记录节点的颜色,可以是red,也可以是black,通过任意一条从根到叶子简单路径上颜色的约束,红黑树保证最长路径不超过最短路径的二倍,因而近似平衡。它的统计性能要好于平衡二叉树(AVL树),插入、删除、查找的最坏时间复杂度都为 O(logn)。
性质(规则):
- 结点是红色或黑色
- 根节点是黑色
- 每个叶子节点(NULL结点)都是黑色的空结点
- 每个红色节点的两个子结点都是黑色(从每个叶子到根的所有路径上不能有两个连续的红色结点)
- 从任一结点到其每个叶子的所有路径都包含相同数目的黑色节点
口诀:根黑叶黑,黑红相间,不能连续两个红,必须相同的黑。
树的调整(旋转+变色):
因此,红黑树的调整既需要二叉排序树或平衡二叉树的旋转,还要有变色操作。
情况1:
情况2:新节点的父结点是黑色
情况3(变色):新结点的父节点和父结点的兄弟结点都是红色