代码随想录Day53:最长公共子序列、不相交的线、最大子序和

最长公共子序列

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for(int i = 1; i <= text1.size(); i++){
            for(int j = 1; j <= text2.size(); j++){
                if(text1[i - 1] == text2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

不相交的线

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        for(int i = 1; i <= nums1.size(); i++){
            for(int j = 1; j <= nums2.size(); j++){
                if(nums1[i - 1] == nums2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
        return dp[nums1.size()][nums2.size()];
     }
};

最大子序和

动规:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        int res = dp[0];
        for(int i = 1; i < nums.size(); i++){
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            res = max(dp[i], res);
        }
        return res;
    }
};

贪心:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        int res = INT_MIN;
        int sum = 0;
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
            if(sum > res) res = sum;
            if(sum < 0) sum = 0;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值