CV炼丹师勇闯力扣训练营
代码随想录算法训练营第23天
- 39 组合总和
- 216 组合总和Ⅱ
- 131 分割回文串
39 组合总和
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。
示例 1:
输入:candidates = [2,3,6,7], target = 7,
所求解集为: [ [7], [2,2,3] ]
示例 2:
输入:candidates = [2,3,5], target = 8,
所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]
注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!
S1 确定变量和参数
*** def backtracking(self, candidates, target, total, startIndex, path, result)😗**
“”"
:param startIndex:记录本层递归的中,集合从哪里开始遍历
:param path: 用来存放符合条件结果
:param result: 存放符合条件结果的集合
“”"
startindex对于组合问题:
如果是一个集合来求组合的话,就需要startIndex,例如:77.组合,216.组合总和III
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:17.电话号码的字母组合
S2 回溯终止条件
从叶子节点可以清晰看到,终止只有两种情况,sum大于target和sum等于target。
sum等于target的时候,需要收集结果
此时用result二维数组,把path保存起来,并终止本层递归。
if (sum > target) {
return;
}
if (sum == target) {
result.push_back(path);
return;
}
S3 单层搜索逻辑
单层for循环依然是从startIndex开始,搜索candidates集合。
注意本题和77.组合 (opens new window)、216.组合总和III (opens new window)的一个区别是:本题元素为可重复选取的
for (int i = startIndex; i < candidates.size(); i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数
sum -= candidates[i]; // 回溯
path.pop_back(); // 回溯
}
代码如下(Python3):
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total > target:
return
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result) # 不用i+1了,表示可以重复读取当前的数
total -= candidates[i]
path.pop()
def combinationSum(self, candidates, target):
result = []
self.backtracking(candidates, target, 0, 0, [], result)
return result
剪枝
其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。
那么可以在for循环的搜索范围上做做文章了。
对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历。
在求和问题中,排序之后加剪枝是常见的套路!
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
if total + candidates[i] > target:
break
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result)
total -= candidates[i]
path.pop()
def combinationSum(self, candidates, target):
result = []
candidates.sort() # 需要排序
self.backtracking(candidates, target, 0, 0, [], result)
return result
216 组合总和Ⅱ
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
所求解集为:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5,
所求解集为:
[
[1,2,2],
[5]
]
这道题目和39.组合总和如下区别:
1.本题candidates 中的每个数字在每个组合中只能使用一次。
2.本题数组candidates的元素是有重复的,而39.组合总和是无重复元素的数组candidates
最后本题和39.组合总和要求一样,解集不能包含重复的组合。
本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合
元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。
所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重
例如: candidates = [1, 1, 2], target = 3 (注: 数层去重需对数组排序)
used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
used[i - 1] == false,说明同一树层candidates[i - 1]使用过
为什么 used[i - 1] == false 就是同一树层呢?
因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。
而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示
代码如下(Python):
from typing import *
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
res = []
self.backtracking(n, k, 0, 1, [], res)
return res
def backtracking(self, tar_sum, k, cur_sum, start_idx, path, res):
if cur_sum > tar_sum: # 剪枝操作
return # 如果path的长度等于k但currentSum不等于targetSum,则直接返回
if len(path) == k:
if cur_sum == tar_sum:
res.append(path[:])
return
for i in range(start_idx, 9 - (k - len(path)) + 2): # 剪枝
cur_sum += i # 处理
path.append(i) # 处理
self.backtracking(tar_sum, k, cur_sum, i + 1, path, res) # 注意i+1调整startIndex
cur_sum -= i # 回溯(别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!)
path.pop() # 回溯
131 分割回文串
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是
回文串 。返回 s 所有可能的分割方案。
示例 1:
输入:s = “aab”
输出:[[“a”,“a”,“b”],[“aa”,“b”]]
示例 2:
输入:s = “a”
输出:[[“a”]]
其实切割问题类似组合问题。
例如对于字符串abcdef:
组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个…。
切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段…。
所以切割问题,也可以抽象为一棵树形结构,如图:
从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。
在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。
代码如下
class Solution:
def partition(self, s: str) -> List[List[str]]:
'''
递归用于纵向遍历
for循环用于横向遍历
当切割线迭代至字符串末尾,说明找到一种方法
类似组合问题,为了不重复切割同一位置,需要start_index来做标记下一轮递归的起始位置(切割线)
'''
result = []
self.backtracking(s, 0, [], result)
return result
def backtracking(self, s, start_index, path, result ):
# Base Case
if start_index == len(s):
result.append(path[:])
return
# 单层递归逻辑
for i in range(start_index, len(s)):
# 此次比其他组合题目多了一步判断:
# 判断被截取的这一段子串([start_index, i])是否为回文串
if self.is_palindrome(s, start_index, i):
path.append(s[start_index:i+1])
self.backtracking(s, i+1, path, result) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
path.pop() # 回溯
def is_palindrome(self, s: str, start: int, end: int) -> bool:
i: int = start
j: int = end
while i < j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True