【论文速递】ICCV2019 - 用于不受限制的目标检测的多对抗Faster-RCNN

论文提出了一种多对抗性FasterR-CNN(MAF)框架,用于解决不受限制环境中的目标检测问题。该框架通过分层域特征对齐和信息不变尺度缩减模块处理域差异,同时采用加权梯度反转层增强对抗域自适应。实验表明,MAF在不受限制的任务上表现出最先进的性能。
摘要由CSDN通过智能技术生成

【论文速递】ICCV2019 - 用于不受限制的目标检测的多对抗Faster-RCNN

【论文原文】:Multi-adversarial Faster-RCNN for Unrestricted Object Detection

作者信息】:Zhenwei He; Lei Zhang

获取地址:https://arxiv.org/pdf/1907.10343.pdf

博主关键词: 目标检测

推荐相关论文:

摘要:

传统的目标检测方法基本上假设训练和测试数据是从受限制的目标域收集的,具有昂贵的标记成本。为了缓解域依赖性和繁琐标注的问题,该文提出利用从具有足够标签的辅助源域训练的领域知识来检测不受限制环境中的对象。具体来说,我们提出了一个用于不受限制的目标检测的多对抗性FasterRCNN(MAF)框架,该框架本质上解决了特征表示中域适应的域差异最小化问题。论文的优点有三个方面:

  1. 针对目标检测器在图像分布导致域视差时往往变得域不兼容的观点,我们提出了一个分层域特征对齐模块,其中设计了多个用于分层域特征混淆的对抗域分类器子模块;
  2. 提出用于分层特征图大小调整的信息不变尺度缩减模块(SRM),以提高对抗域自适应的训练效率;
  3. 为了提高域适应性,将具有检测结果的聚合建议特征馈送到建议的加权梯度反转层(WGRL)中,用于表征硬混淆域样本。我们在不受限制的任务上评估我们的 M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值