【论文速递】ICCV2019 - 用于不受限制的目标检测的多对抗Faster-RCNN
【论文原文】:Multi-adversarial Faster-RCNN for Unrestricted Object Detection
【作者信息】:Zhenwei He; Lei Zhang
获取地址:https://arxiv.org/pdf/1907.10343.pdf
博主关键词: 目标检测
推荐相关论文:
无
摘要:
传统的目标检测方法基本上假设训练和测试数据是从受限制的目标域收集的,具有昂贵的标记成本。为了缓解域依赖性和繁琐标注的问题,该文提出利用从具有足够标签的辅助源域训练的领域知识来检测不受限制环境中的对象。具体来说,我们提出了一个用于不受限制的目标检测的多对抗性FasterRCNN(MAF)框架,该框架本质上解决了特征表示中域适应的域差异最小化问题。论文的优点有三个方面:
- 针对目标检测器在图像分布导致域视差时往往变得域不兼容的观点,我们提出了一个分层域特征对齐模块,其中设计了多个用于分层域特征混淆的对抗域分类器子模块;
- 提出用于分层特征图大小调整的信息不变尺度缩减模块(SRM),以提高对抗域自适应的训练效率;
- 为了提高域适应性,将具有检测结果的聚合建议特征馈送到建议的加权梯度反转层(WGRL)中,用于表征硬混淆域样本。我们在不受限制的任务上评估我们的 M