- 博客(8)
- 收藏
- 关注
原创 用RFM模型进行客户分层分析(online_retail数据集)
本项目通过数据清洗和缺失值处理,确保了数据的完整性。统计退货情况揭示了退货模式和趋势,为后续分析提供依据。采用RFM模型对客户进行分层,识别高价值客户与潜力客户,并通过可视化呈现各群体特征。基于客户分层结果,制定了针对性策略
2025-01-25 08:51:37
1769
原创 用Prophet算法进行销量预测(Rossmann Store Sales数据集)
本项目流程主要包括数据导入与清洗、特征分析、时间序列趋势分析、使用Prophet模型进行销量预测。通过增加特征变量、处理缺失值,分析商店类型、促销等因素对销量的影响,最终实现对店铺未来6周销量的预测并可视化展示a类型店铺销售总额和客流总量最高d类店铺的客均销售额最高,顾客购买额具有优势,其中在有促销但没持续促销的时候,客户购买额更高;公司可以考虑给d类店铺提供更广的商品多样性。
2025-01-24 14:33:19
644
原创 用SARIMA算法进行销量预测(Rossmann Store Sales数据集)
本项目流程主要包括数据导入与清洗、特征分析、时间序列趋势分析、使用SARIMA模型进行销量预测。通过增加特征变量、处理缺失值,分析商店类型、促销等因素对销量的影响,最终实现对店铺未来6周销量的预测并可视化展示
2025-01-23 20:12:22
974
原创 电信客户流失分析(Telco Customer Churn数据集)
本项目的核心流程包括数据读取、数据清洗、特征选择、统计分析、特征工程、模型训练与评估、以及特征重要性分析。通过综合应用统计分析方法,深入分析分类变量和连续变量特征的关系,确保数据的高质量和模型的高效性。接下来,我们利用九种主流机器学习算法(包括 Random Forest、SVC、Logistic Regression、Naive Bayes、Decision Tree、AdaBoost、GBDT、XGB、CatBoost)进行建模,并通过模型输出的特征重要性进行分析,识别对客户流失预测最具影响力的因素。
2025-01-22 23:37:33
782
原创 使用基于物品的协同过滤算法构建电影推荐系统(MovieLens数据集)
Item-based Collaborative Filtering (基于物品的协同过滤) 算法通过计算物品之间的相似度来进行推荐。首先,构建用户-电影评分矩阵,然后利用皮尔逊相关系数衡量物品之间的相似度。预测某用户对电影的评分时,基于该用户对其他相似电影的评分以及这些电影之间的相似度进行加权计算。该算法通过基准评分和相似度加权评分的组合,预测目标用户可能的兴趣,广泛应用于个性化推荐系统中。
2025-01-21 14:32:48
1594
原创 使用基于用户的协同过滤算法构建电影推荐系统(MovieLens数据集)
User-based Collaborative Filtering(基于用户的协同过滤)算法通过计算用户之间的相似度来进行推荐。首先,构建用户-电影评分矩阵,然后利用皮尔逊相关系数衡量用户之间的相似度。预测某用户对电影的评分时,基于其与其他用户的相似度以及近邻用户的评分进行加权计算。该算法通过基准评分和相似度加权评分的组合,预测目标用户可能的兴趣,广泛应用于个性化推荐系统中。
2025-01-20 17:51:16
311
原创 使用矩阵分解算法构建电影推荐系统(MovieLens数据集)
基于MovieLens数据集,运用矩阵分解算法构建电影推荐系统。本文详细讲解了矩阵分解算法的核心公式及实现过程,最终通过训练实际的MovieLens电影评分数据,为用户提供精准的电影推荐。
2025-01-19 17:17:53
388
原创 基于深度学习的推荐系统构建:Movielens 数据集
本项目构建了基于深度学习的电影推荐系统,涵盖数据处理、模型设计、训练、验证、特征提取和预测。数据预处理阶段,用数字编码和嵌入层表示类别型数据(如UserID),避免高维稀疏矩阵计算负担。电影题材使用Multi-Hot编码,电影名称通过LSTM提取特征。模型由用户和电影特征网络组成,提取特征后通过全连接层合并输出评分。训练过程中,数据集分为训练集、验证集和测试集,使用MSE损失函数优化网络,学习率调度器衰减学习率,加速收敛并优化细节。采用早期停止策略,在验证损失降低时保存模型,并支持从中断处继续训练。
2025-01-18 13:29:45
2877
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人