JavaScript数据结构(哈希表)

JavaScript数据结构(哈希表)

哈希表

  • 哈希表基于数组实现,但相对于数组。
  • 提供非常快速的 插入-删除-查找 操作
  • 哈希表中的 key 是不允许重复的,不能放置相同的 key,用于保存不同的元素

哈希化:把字符串转化为对应的下标值。封装在一个函数中,这个函数就叫哈希函数

不同的字符串哈希化后可能等到同于个下标值,产生地址冲突。解决方案:链地址法和开放地址法

链地址法:数组里边的位置,不再放的是但以的值,而可以是链表或者数组
在这里插入图片描述

开放地址法:发现同一个下标上已经存在数据了,就将下标向后推一定步长,保存在还为空的位置。

  • 线性探测:下标逐渐+1
  • 二次探测:下标+1^2 、下标+ 2^2…
  • 再哈希化:将字符串用另一个哈希函数,再次得到冲突后保存的地址。

装填因子:总数据项 / 哈希表长度。一般当填装因子>0.75或者<

0.25时,查找效率会下降,此时要进行哈希表扩充或者压缩操作。

哈希表常见操作

  • put(key, value) 插入或修改操作。
  • get(key) 获取哈希表中特定位置的元素。
  • remove(key) 删除哈希表中特定位置的元素。
  • isEmpty() 如果哈希表中不包含任何元素,返回 trun,如果哈希表长度大于 0 则返回 false
  • size() 返回哈希表包含的元素个数。
  • resize(value) 对哈希表进行扩容操作。
  • isPrime(value)判断一个数是否为一个质数。
  • getPrime(number)得到离得number最近得质数.

JavaScript代码简单实现封装哈希表

采用链地址法,实现上面图片的结构

class Node {
    constructor(key, value) {
        this.key = key;
        this.value = value;
        this.next = null;
    }
}

class HashTable {
    constructor() {
        this.storage = [];
        this.length = 0;
        this.limit = 7;
    };
    //  哈希函数的定义
    HashFn(str, limit) {
            let result = 0;
            const prime = 11;
            for (let item of str) {
                result += result * prime + parseInt(item.charCodeAt());
            }
            return (result % limit)
        }
        //哈希查找和修改
    put(key, value) {
        const index = this.HashFn(key, this.limit);
        if (!this.storage[index]) {
            const node = new Node(key, value);
            this.storage[index] = node;
            this.length += 1;
            // 判断填充因子 ,判断是否需要进行哈希表扩充
            if (this.length > this.limit * 0.75) {
                const num = this.getPrime(this.limit * 2);
                this.resize(num)
            }
            return
        }
        const current = this.storage[index];
        while (current.key != key) {
            current = current.next;
            if (!current) {
                const node = new Node(key, value);
                this.length += 1;
                current = node;
                return
            }
        };
        // 查到
        current.value = value;
        return
    }
    get(key) {
        const index = this.HashFn(key, this.limit);

        if (!this.storage[index]) {
            return null;
        }
        let current = this.storage[index];
        while (current.key != key) {
            current = current.next;
            if (!current) {
                return null
            }
        }
        return current.value

    }
    remove(key) {
        const index = this.HashFn(key, this.limit);
        if (!this.storage[index]) {
            return false
        }
        let current = this.storage[index];
        if (!current.next && current.key == key) {
            this.storage[index] = null;
            this.length -= 1;
            // 判断填充因子 ,判断是否需要进行哈希表压缩
            if (this.length < this.limit * 0.25) {
                const num = this.getPrime(this.limit / 2);
                this.resize(num)
            }
            return current.value;
        }
        let prev = this.storage[index];
        while (current.key != key) {
            prev = current;
            current = current.next;
            if (!current) {
                return false
            }
        }
        const value = current.value;
        prev.next = null;
        this.length -= 1;
        return value;
    }
    isEmpty() {
        return this.length == 0;
    }
    size() {
            return this.length;
        }
        // 得到离得number最近得质数
    getPrime(number) {
            while (!this.isPrime(number)) {
                number++;
            }
            return number
        }
        // 判断是否是质数
    isPrime(value) {
        if (value <= 1 || value === 4) return false
        const num = Math.ceil(Math.sqrt(value));
        for (var i = 2; i < num; i++) {
            if (num % i == 0) {
                return false
            }
        }
        return true
    }
    resize(value) {
        const items = this.storage;
        this.length = 0;
        this.limit = value;
        this.storage = [];
        for (var i = 0; i < items.length; i++) {
            const list = items[i];
            if (!list) {
                continue;
            }
            while (list) {
                this.put(list.key, list.value);
                list = list.next;
            }
        }
    }
}

代码测试

const hashTable = new HashTable();
hashTable.put('aaa', { name: 'aaa', age: '18' });
hashTable.put('bbb', { name: 'bbb', age: '20' });
hashTable.put('ccc', { name: 'ccc', age: '21' });
hashTable.put('ddd', { name: 'ddd', age: '22' });
console.log(hashTable.get('bbb')); // { name: 'bbb', age: '20' }
console.log(hashTable.remove('ddd')); // { name: 'ddd', age: '22' }
console.log(hashTable.get('ddd')); // null
console.log(hashTable.get('ccc')); // { name: 'ccc', age: '21' }

'20' }
console.log(hashTable.remove('ddd')); // { name: 'ddd', age: '22' }
console.log(hashTable.get('ddd')); // null
console.log(hashTable.get('ccc')); // { name: 'ccc', age: '21' }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值