榴莲不太甜
码龄5年
关注
提问 私信
  • 博客:16,907
    16,907
    总访问量
  • 9
    原创
  • 95,420
    排名
  • 1,406
    粉丝
  • 281
    铁粉
  • 学习成就

个人简介:研究生,CV爱好者一枚,希望专栏内容能对大家有所帮助,都快快发paper。。。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
  • 加入CSDN时间: 2020-05-03
博客简介:

up主为在读研究生,从事cv研究4余年,绝对靠谱。

博客描述:
本博客主要分享一些热门目标检测算法的改进,供大家学习交流,助力科研论文涨点,欢迎大家订阅和关注!!
查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    288
    当月
    11
个人成就
  • 获得294次点赞
  • 内容获得2次评论
  • 获得323次收藏
  • 代码片获得937次分享
创作历程
  • 9篇
    2024年
成就勋章
TA的专栏
  • YOLOv10改进实战
    9篇
兴趣领域 设置
  • Python
    pythonpyqtnumpypandasconda
  • 人工智能
    自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
搜TA的内容
搜索 取消

【6-4】YOLOv10添加【Axial Attention】【HaloAttention】等注意力机制 【超30种先进模块随心选】【注意力机制篇】

Axial Attention 是一种高效的注意力机制,专门设计用于多维数据如图像和视频。它通过分解高维注意力操作,分别在各个轴上执行,从而减少计算复杂度并提高模型的效率。Axial Attention 的核心思想是将多维注意力分解为一系列一维的注意力操作,这样可以显著降低计算成本,同时保持全局上下文信息的捕获能力。对于一个二维特征图(例如图像),Axial Attention 分别在水平轴和垂直轴上计算注意力。
原创
发布博客 2024.07.04 ·
763 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

【6-3】YOLOv10添加【SGE】【A2Attentio】【GC】等注意力机制 【超30种先进模块随心选】【注意力机制篇】

SGE注意力机制通过在特征图的空间维度上进行分组,并在每个组内应用注意力操作,来增强特征的表达能力。它通过对不同空间位置的特征进行有选择性的增强,从而提升模型对语义信息的捕捉能力。其核心思想是将特征图在空间维度上划分为多个组,对每个组内的特征进行注意力增强。这样可以捕捉到局部空间区域的特征相关性,提高特征表示的语义丰富度。局部特征增强:通过在空间维度上分组并应用注意力机制,SGE能够捕捉到局部区域的特征相关性,提高特征表示的语义丰富度。
原创
发布博客 2024.06.26 ·
683 阅读 ·
14 点赞 ·
0 评论 ·
6 收藏

【6-2】YOLOv10添加【CoTAttention】【SimAM】【SKAttention】等注意力机制 【超30种先进模块随心选】【注意力机制篇】

本文接续上文介绍YOLOv10如何添加其他先进注意力机制。超30种注意力机制模块,助力文章涨点多多🚀🚀BAM于2018年提出,是一种轻量级的注意力机制,用于提高卷积神经网络的性能。它通过在网络中加入注意力模块来增强网络对重要特征的关注,忽略不重要的信息,从而提升整体表现。BAM的优点轻量级:BAM模块在计算上非常高效,不会显著增加模型的计算复杂度和参数量。兼容性好:BAM可以很容易地嵌入到现有的各种卷积神经网络架构中,提升它们的性能。
原创
发布博客 2024.06.25 ·
1412 阅读 ·
29 点赞 ·
1 评论 ·
30 收藏

【6-1】YOLOv10添加【CBAM】【SE】【CA】【ECA】【BAM】注意力机制 【超30种先进模块随心选】【注意力机制篇】

注意力机制(Attention Mechanism)是深度学习中的一种技术,旨在模拟人类注意力的特点,即在处理复杂信息时,能够聚焦于其中的关键部分,从而提高处理效率和效果。它最初在自然语言处理(NLP)领域中被提出,但现已广泛应用于各种深度学习任务,如计算机视觉、语音识别等。本文主要介绍如何在YOLOv10中添加注意力机制,提供了4种经典注意力机制模块供大家学习,使用时可据自己的实际情况进行选择。
原创
发布博客 2024.06.21 ·
2510 阅读 ·
18 点赞 ·
1 评论 ·
45 收藏

【5】YOLOv10更换空间金字塔池化模块 【手把手教学】【先进模块随心选】

本文主要介绍的是如何改进替换YOLOv10的空间金字塔池化模块,提供了9种先进模块供大家参考,使用时可据自己的实际情况进行选择。Spatial Pyramid Pooling (SPP)模块由何恺明等人于2014年的论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》中提出,旨在解决传统卷积神经网络(CNN)在处理变尺寸输入图像时的限制。
原创
发布博客 2024.06.17 ·
2799 阅读 ·
62 点赞 ·
0 评论 ·
76 收藏

【YOLOv10改进实战】**【4】YOLOv10训练自己的【数据集】:保姆级教程

本文主要介绍如何运用YOLOv10训练自己的数据集,包括【环境配置】-【数据导入】-【模型训练】-【模型评估】-【模型预测】-【模型导出】。
原创
发布博客 2024.06.03 ·
2599 阅读 ·
33 点赞 ·
0 评论 ·
46 收藏

【YOLOv10改进实战】**【3】YOLOv10“启动”——数据集的搭建:保姆级教程

目标检测是计算机视觉领域的一个重要任务,它旨在识别图像中的目标对象,并确定它们的位置。当前目标检测在各领域已有广泛研究,每年都有大量的paper被发表。几乎所有的研究性论文都会使用数据集训练自己改进的模型,数据集是我们训练模型必不可缺的东西,也是paper发表的关键一步。下文将介绍 数据集的获取及处理过程。
原创
发布博客 2024.06.02 ·
1616 阅读 ·
33 点赞 ·
0 评论 ·
36 收藏

【YOLOv10改进实战】**【2】YOLOv10解析:实时端到端目标检测

YOLOv10是清华大学的Ao Wang, HuiChen, LihaoLiu等人于 2024年5月发布的,是一种新的实时端到端目标检测器,也是YOLO系列最新的算法。code。
原创
发布博客 2024.06.01 ·
1420 阅读 ·
34 点赞 ·
0 评论 ·
9 收藏

【YOLOv10改进实战】**【1】最全YOLO系列算法介绍:从yolov1-yolov10**

YOLO的全称是“You Only Look Once”,指能够通过一次网络来完成检测任务。与先前的方案(如:RCNN系列)不同的是,YOLO是把目标检测转变为一个回归问题,利用整张图片作为网络的输入,使用单个神经网络,就可直接从完整图像上预测边界框和类别概率。YOLO(You Only Look Once)v1 是一种由 Joseph Redmon 等人在2016年提出的实时物体检测系统。它相较于传统的物体检测方法,具有显著的速度优势,并在保持较高检测精度的同时,极大地提高了效率。
原创
发布博客 2024.05.31 ·
3070 阅读 ·
67 点赞 ·
0 评论 ·
64 收藏