多层感知机

1、感知机 

2、感知机的训练原理 

判断标准:y_i乘w与x_i的内积,小于0继续进行迭代

停止条件:所有样本都分类正确

3、感知机的收敛定理

 4、感知机的问题

不能拟合XOR问题(异或问题:相异为1,相同为0/-1)

 原因:感知机只能产生线性分割面,不能拟合XOR函数

处理方法:多层感知机可以解决XOR问题

5、多层感知机(解决XOR问题)

 

 5.1 为什么需要非线性激活函数?——加入非线性因素,增加神经网络表达能力,使得神经网络可以任意逼近任何非线性函数

 

  5.2 激活函数

sigmoid激活函数

注意:当输入接近0时,sigmoid函数接近线性变换 

 Tanh激活函数

 注意,当输入在0附近时,tanh函数接近线性变换。函数的形状类似于sigmoid函数, 不同的是tanh函数关于坐标系原点中心对称。

 ReLU激活函数

使用ReLU的原因是,它求导表现得特别好:要么让参数消失,要么让参数通过。 这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题 

ReLU优点:

1、处理了sigmoid、tanh中常见的梯度消失问题(正区间都是1)(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,从而无法完成深层网络的训练。)

2、是计算梯度最快的激活函数

3、收敛速度远快于sigmoid和tanh

4、Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生

ReLU缺点:

1、ReLU的输出不是zero-centered;

2、ReLU在训练的时候很”脆弱”,一不小心有可能导致神经元”坏死”。(80 条消息) 深度学习中,使用relu存在梯度过大导致神经元“死亡”,怎么理解? - 知乎 (zhihu.com)icon-default.png?t=M0H8https://www.zhihu.com/question/67151971/answer/434079498

ReLU导数图像

5.3 多分类问题 

 多类分类本质上是softmax,在softamx基础上加入隐藏层就是多层感知机

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值