自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(753)
  • 收藏
  • 关注

原创 Arm AMBA 协议集相关文章汇总(AHB/APB/AXI/CHI等),10.14更新

整理自:极术社区整理:极术社区团队如想加入极术社区AMBA技术交流群,请加微信 aijishu20 (备注CSDN)进入。可即时获取极术公开课及Arm相关资料。1.AMBA协议集的相关技术文档PDF下载,包含AMBA specifications- 5文档,MBA specifications- 4文档,example AMBA SYstems,AMBA compliance and checks,AMBA design and integrationAMBA协议集技术文档PDF下载2. I2.

2020-07-20 19:39:12 1570

原创 【Mini-F5265-OB开发板试用测评】按键控制测试

本文介绍了基于MCU的按键控制LED实现方案。通过连接PB0和PB1引脚的K1、K2按键,使用GPIO_KEY_Input_Sample()函数检测按键状态,结合状态机处理按键事件,并调用PLATFORM_LED_Enable()控制LED灯亮灭。程序采用10ms延时进行按键消抖处理,最终实现按键与LED的联动控制效果。该方案展示了嵌入式系统中基本的GPIO输入输出控制方法。

2025-05-27 10:27:21 107

原创 【Mini-F5265-OB开发板试用测评】3、I2C读写EEPROM以及例程建议

本文介绍了通过MM32F5260开发板实现I2C读写EEPROM的实践过程。首先修改了printf重定向函数以支持调试输出,接着根据开发板原理图调整I2C1接口配置(PC6/SCL、PC7/SDA),替换原示例中的I2C2相关代码。测试发现写入后需适当延时才能正确读取数据,否则会出现读取错误。整个实验验证了I2C接口多器件通信的便捷性,展示了通过官方示例快速实现外设驱动的可行性。

2025-05-26 12:01:17 262

原创 【Mini-F5265-OB开发板试用测评】2、关于platform.c中的串口号初始化修改的建议

本文详细介绍了如何将串口调试输出从UART2修改为UART3,以便直接使用MM32LINK进行调试。

2025-05-23 14:45:15 405

原创 【灵动Mini-F5265-OB】环境搭建以及按键串口驱动

本文分享了作者试用灵动Mini-F5265-OB开发板的初步体验。作者首先通过极术社区获取了开发板的相关资料,包括原理图、产品手册和用户手册,并下载了丰富的例程。随后,作者详细介绍了如何通过修改代码实现按键与串口打印的驱动,并成功验证了按键控制LED灯亮灭及串口打印按键状态的功能。作者认为,该开发板的文档和示例编写得非常清晰,使得工程师能够快速上手并专注于业务实现。

2025-05-22 12:39:00 260

原创 【Mini-F5265-OB开发板试用测评】简介、工程测试

本文详细介绍了灵动Mini-F5265-OB开发板及其主控MM32F5265E7PV的特性,包括32位Arm Star-MC1内核、256KB Flash、128KB SRAM等硬件资源。

2025-05-21 12:23:35 860

原创 瑞莎星睿 O6 (Radxa Orion O6)-ubuntu24.04-ROS2 运行深度估计模型

"星睿O6"迷你ITX主板搭载了CIX P1(CD8180)12核Armv9处理器和30TOPS算力的NPU,适合AI开发工作站和高性能计算应用。

2025-05-20 12:19:31 539

原创 “星睿O6”AI PC 开发套件评测: NPU 算力测评(1)

本文探讨了NPU(神经网络处理器)在实际应用中的性能表现,尤其是其算力与理论值之间的差距。通过分析NPU的算力计算公式,作者发现实际算力远低于理论值,并深入挖掘了可能的原因。

2025-05-19 15:41:42 963

原创 【“星睿O6”评测】对比高通8Gen3分类、检测、分割、超分网络的AIBenchmark测试

本文对瑞萨-O6和高通8均3的CPU、GPU、NPU进行了性能测试,选取了AI-Benchmark中的四个常见类别:分类网络(Inception-V3)、检测网络(YOLO V4 Tiny)、分割网络(DeepLab V3+)和超分网络(ESR-GAN)。测试方法采用TFLite 2.16.2框架,分别使用默认CPU(4线程)、GPUCL Delegate(GPU)和Qualcomm QNN Delegate(NPU)进行测试,预热20次后运行100次。测试结果通过图表展示,详细比较了不同硬件在不同网络任务

2025-05-16 11:33:10 209

原创 【“星睿O6”AI PC开发套件评测】图像超采样模型waifu2x的部署以及利用GPU进行加速

本文介绍了在“星睿 O6”开发板上部署并运行 waifu2x 模型的过程。

2025-05-15 12:16:22 902

原创 「“星睿O6”AI PC开发套件评测」部署DeepSeek的3种方法

1.1. LLM和DeepSeek是什么大语言模型(LLM)是基于深度学习的人工智能技术,通过海量文本数据训练,采用​​Transformer架构​​实现自然语言的理解与生成。其核心特点是参数规模庞大(通常达百亿至万亿级别)、训练数据覆盖多领域,并依赖高性能计算资源。例如,GPT-3拥有1750亿参数,训练数据量达3000亿单词,DeepSeek-R1​的参数量约700亿,训练数据量未知。这几年大语言模型发展迅速,不断有新的突破。而DeepSeek就是由国内公司开发的通用低成本、高性能LLM。

2025-05-14 12:01:59 899

原创 「“星睿O6”AI PC开发套件评测」使用coze创建一个模仿芙宁娜的聊天机器人

文章介绍了如何使用扣子(Coze)平台创建和部署一个角色扮演机器人。

2025-05-13 10:25:15 173

原创 【“星瑞” O6 评测】 — llama.cpp不同优化速度对比

Arm Kleidi 成为解决这些挑战的理想方案,它能够为运行在 Arm CPU 上的所有 AI 推理工作负载提供无缝的性能优化。KleidiAI 是一套轻量级且高性能开源的 Arm 例程,专为 AI 加速而设计。

2025-05-12 14:12:18 762

原创 【“星睿O6”AI PC开发套件评测】+ MTCNN 开源模型部署和测试对比

经过了前几篇文章的铺垫,从搭建 tensorflow 开发环境,到测试官方 onnx 模型部署到 NPU,接着部署自己的 mnist tensorflow 模型到 NPU。这是一个从易到难的过程,本篇文章介绍开源复杂的人脸识别模型 mtcnn 到 “星睿O6” NPU 的部署和CPU对比测试。

2025-05-09 15:06:23 1203

原创 # “星瑞” O6 评测 —— llm CPU部署对比高通骁龙CPU

随着大模型应用场景的不断拓展,arm cpu 凭借其独特优势在大模型推理领域的重要性日益凸显。它在性能、功耗、架构适配等多方面发挥关键作用,推动大模型在不同场景落地从推理速度来看:星瑞O6在同样的核心数量时,推理速度更快。而且星瑞O6共有12个CPU核。

2025-05-08 14:34:43 965

原创 【“星睿O6”评测】Armv9.2a、KLEIDIAI及vulkan加速llamacpp部署本地AI

llama.cpp 的主要目标是通过最小的设置,实现 LLM 推理,在各种硬件上(无论是本地还是云端)提供最先进的性能。纯 C/C++实现,无任何依赖苹果 M1/M2 芯片(Apple silicon)优化,支持 Arm NEON、Accelerate 和 Metal 框架支持 x86 架构的 AVX、AVX2、AVX512 和 AMX 指令集支持 1.5-bit、2-bit、3-bit、4-bit、5-bit、6-bit 和 8-bit 整数量化,实现更快速的推理和内存减少。

2025-05-07 11:16:07 937

原创 【“星瑞” O6 评测】 — 车辆速度估计

星瑞 O6 的 AI 能力依托先进的技术架构得以展现。其采用 Armv9 架构,集成了 Arm®v9 CPU 核心、Arm Immortalis™ GPU 以及安谋科技 “周易” NPU。这样的异构架构设计是其 AI 性能的基石,在处理 AI 相关任务时,CPU、GPU、NPU 能够协同工作,大大加速 AI 模型的运行效率。​其中,“周易” NPU 发挥着关键作用,它拥有高达 30TOPS 的算力。

2025-05-06 12:35:32 258

原创 【“星睿O6”AI PC开发套件评测】+ tensorflow 初探

因为本次我的项目计划使用 tensorflow,所以这篇文章主要想做一个引子,介绍如何在“星睿O6”上搭建 tensorflow 的开发环境和验证测试。

2025-04-30 11:55:53 711

原创 【“星睿O6”AI PC开发套件评测】新手向的开发套件上手以及性能评测

目前市场上桌面级别的 Arm PC 以及 ARM 开发板产品相对较少,就算有也是类似高通 X Elite 那种漫天要价的产品,或者是价格相对较低但搭配的 Arm 核心十分古老,因此很高兴市面上能够出现这样一款价格相对亲民且拥有不俗主流性能的开源 Arm 开发板搅局,得益于 Arm 的低功耗,以及此开发板的强劲性能,星睿 O6 面向普通用户十分适合作为一台不间断运行的 AI 中枢或者是家庭影音、家庭存储中枢,同时面向开发人员也是十分强劲的得力助手。

2025-04-29 12:58:09 743

原创 【“星睿 O6”AI PC 开发套件评测】ncnn 安装+Benchmark+大模型解读测评数据

运行benchmark主要关注网络结构本身的计算耗时,而不是具体的推理结果,所以只需要网络结构定义文件(即 ncnn 的 .param 文件)拷贝到编译好的benchmark文件夹内。这里分别在CPU和GPU上运行Benchmark程序,并使用Gemini2.5 Pro大模型对结果数据进行解读。还是蛮详细的,这里笔者参考Raspberry Pi编译的教程提供在radxa o6板子上的完整编译命令。ncnn的编译安装官方仓库提供的。

2025-04-28 11:44:37 1069

原创 【首款Armv9开源芯片“星睿“O6测评】SVE2指令集介绍与测试

终于有一款开源的Armv9芯片了,想想之前为了能够学习和测试SVE指令,都是使用QEMU、Fast Models和Arm Instruction Emulator(ArmIE)模拟软件,现在终于可以甩开这些模拟软件在真实的硬件上学习测试了,真是一件激动人心的事情。

2025-04-27 11:54:11 1265

原创 【“星瑞” O6 评测】—NPU 算力对比高通骁龙 npu

在当下人工智能蓬勃发展的时代,设备的 NPU(神经网络处理器)算力成为衡量其 AI 处理能力的关键指标。“星瑞” O6 凭借其独特的 NPU 设计在市场中崭露头角,而高通骁龙系列处理器中的 NPU 也以高性能著称。本文将深入剖析 “星瑞” O6 的 NPU 与高通骁龙相关型号 NPU 的算力表现,通过实际 yolox_l 模型的推理速度测试和数据对比,为读者呈现二者在 AI 运算能力上的差异。

2025-04-25 12:39:54 741

原创 【“星睿O6”AI PC开发套件评测】开箱+刷机+基础环境配置

即可,笔者同时验证过使用USB和使用NVMe硬盘盒直接在硬盘上刷机,操作下来建议使用NVMe硬盘盒,这样效率更高,不要问为什么,看下面的使用USB刷机过程的图片即可。支持的扩展:包含大量扩展,如 cl/_khr/_fp16(半精度浮点支持)和 cl/_arm/_matrix/_multiply(ARM 矩阵乘法优化)Megpeak是一个用于测试处理器峰值计算性能的工具,目前支持ARM、x86架构的处理器以及由OpenCL驱动的GPU。单精度浮点计算:~2270 GFLOPS(float2/float4)

2025-04-24 12:47:22 457

原创 【“星睿O6”评测】RVM人像分割torch➡️ncnn-CPU/GPU和o6-NPU部署全过程

稳定视频抠像(RVM)是一款功能强大的实时视频人像抠图技术,其由字节跳动项目组开发。不同于现有神经网络将每一帧作为单独图片处理,RVM使用循环神经网络,在处理视频流时有时间记忆。RVM可在任意视频上做实时高清抠像。在Nvidia GTX 1080Ti上实现4K 76FPS和HD 104FPS。

2025-04-23 11:57:10 595

原创 【“星睿O6”AI PC开发套件评测】GPU矩阵指令算力,GPU带宽和NPU算力测试

【“星睿O6”AI PC开发套件评测】GPU矩阵指令算力,GPU带宽和NPU算力测试安谋科技、此芯科技与瑞莎计算机联合打造了面向AI PC、边缘、机器人等不同场景的“星睿O6”开发套件该套件异构集成了Arm®v9 CPU核心、Arm Immortalis™ GPU以及安谋科技“周易”NPU。

2025-04-22 12:19:08 820

原创 【“星睿O6”AI PC开发套件评测】NPU上部署Yolov8l模型并实现实时目标检测功能

从应用开发上最直观的感受就是上手非常容易,NPU的KMD和UMD安装非常简单快捷,AI_MOD_HUB提供了极其丰富的AI开发实例,几乎涵盖了当前主流和热门的业务类型,甚至可以将新模型或优化后的模型通过NOE Compiler工具转换成CIX NPU格式。

2025-04-21 11:41:39 758

原创 “星睿O6” AI PC开发套件评测 - 部署PVE搭建All in One NAS服务器

Radxa O6是一款性能卓越的单板计算机,其强劲的硬件配置和多样化的接口设计,使其成为家庭和小型企业理想的All in One服务器解决方案。值得一提的是,O6原生配备了两个5G网口,便于直接实现软路由的部署。此外,设备上的两个USB 4.0接口极大地便利了外部设备的扩展,例如连接外置显卡。O6还支持原生NVMe SSD作为系统盘,虽然缺少原生的SATA接口,但通过PCIe 4.0 x16扩展槽,用户可以轻松添加SATA或NVMe设备,USB 4.0同样支持连接硬盘柜。O6采用ITX板型,与市面上ITX机

2025-04-18 11:19:23 1249

原创 “星睿O6” AI PC开发套件评测 - Windows on Arm 安装指南和性能测评

总体来说,Radxa"星睿O6"在 WOA 上的表现尚可,但仍存在驱动不全和性能问题。日常办公和网页浏览表现良好,但网卡驱动较为繁琐,且缺乏显卡驱动。我使用了两天,比起xiaomi 8和树莓派的WOA,体验好很多,浏览网页很流畅,VS开发也能没问题,算是能用的水平。期待后续官方的版本吧。希望能把网卡,WIFI,GPU和声卡驱动起来,这样基本就是一个很好的办公设备了。

2025-04-17 12:25:52 1148

原创 低功耗AIPC已来——瑞莎 “星睿 O6” 开箱及待机功耗/性能对比

瑞莎 “星睿 O6” 开发套件由 Radxa 推出,Radxa 团队 2012 年在深圳成立,前身是华中科技大学的嵌入式团队,从发烧友创作者组成的初创公司发展为全球硬件公司,服务全球数百万用户。“星睿 O6” 作为全球首款 Armv9 开源主板,具备独特的硬件架构和性能表现。​其系统框图展示了丰富的接口和强大的组件。CPU 方面,拥有 4x 高频 A720 / 4x 中频 A720 / 4xA520,四通道内存最高支持 LPDDR5 6400 MT/s。

2025-04-16 11:58:08 645

原创 【“星睿O6”AI PC开发套件评测】对比Jetson CPU/GPU推理posenet

虽然集成的“周易”NPU算力可达30TOPS,目前已成功适配多款主流AI模型,满足生成式AI在多元端侧场景的应用需求,但是,“周易”NPU提供的专有接口和工具链在已有应用的移植中,存在非常高的学习成本和开发成本。原有开发者要将之前开发的应用程序能够无缝运行或迁移到“星睿O6”平台,将付出很大的成本,没有足够的经济利益难以驱动开发者进行移植,从而无法达到生态的繁荣,进而更好的推动硬件的推广和销售。c.优化性能: TFLite 经过专门优化,可在资源受限的设备上实现高效推理,例如通过模型量化和硬件加速。

2025-04-15 12:16:21 712

原创 【“星睿O6”AI PC开发套件评测】复用已有软件生态,CPU和GPU进行推理mobilenet

虽然集成的“周易”NPU算力可达30TOPS,目前已成功适配多款主流AI模型,满足生成式AI在多元端侧场景的应用需求,但是,“周易”NPU提供的专有接口和工具链在已有应用的移植中,存在非常高的学习成本和开发成本。原有开发者要将之前开发的应用程序能够无缝运行或迁移到“星睿O6”平台,将付出很大的成本,没有足够的经济利益难以驱动开发者进行移植,从而无法达到生态的繁荣,进而更好的推动硬件的推广和销售。c.优化性能: TFLite 经过专门优化,可在资源受限的设备上实现高效推理,例如通过模型量化和硬件加速。

2025-04-14 11:35:17 419

原创 【“星睿O6”AI PC开发套件评测】+ Debian 系统安装及 sysbench 跑分对比

很荣幸这次可以得到机会评测。正文开始之前,忍不住还是想放几张开箱照片,板子实在是太精致了。

2025-04-11 13:39:34 450

原创 【“星睿O6”评测】三套OpenCV,OpenCL/KleidiCV/JPG硬件编码加速测试

orion o6 的 armv9 cpu 能享受到 ARM KleidiCV 的优化成果,有加速效果orion o6 的 opencv opencl 整合很不错,没有遇到什么坑,使用 UMat 有加速效果orion o6 的 v4l2 视频编解码硬件适配全面,JPEG编码性能也很好,这对摄像头直播推流很有帮助。

2025-04-10 15:19:07 1162

原创 【“星睿O6”AI PC开发套件评测】在O6开发板使用gemma-2b测试CPU性能

Gemma 3 2B 模型文件:访问 Kaggle 上的 Gemma 模型页面 https://www.kaggle.com/models/google/gemma。x64 Linux 主机:安装CMake 和 arm-gnu-toolchain-12.2.rel1-x86_64-aarch64-none-linux-gnu。拷贝gemma、tokenizer.spm、2b-it-sfp.sbs到O6主机主机中。2b-it-sfp 20 亿参数的指令调优模型,8 位切换浮点。radxa O6主机。

2025-04-09 11:31:13 744

原创 深入浅出 | 谈谈MNN GPU性能优化策略

MNN(Mobile Neural Network)是一个高性能、通用的深度学习框架,支持在移动端、PC端、服务端、嵌入式等各种设备上高效运行。MNN利用设备的GPU能力,全面充分“榨干”设备的GPU资源,来进行深度学习的高性能部署与训练。

2024-11-04 12:23:17 1016

原创 利用GPU加速在Orange Pi 5上跑LLMs:人工智能爱好者High翻了!

利用GPU加速在Orange Pi 5上跑LLMs:人工智能爱好者High翻了!

2024-11-01 10:16:09 767

原创 遥遥领先!手把手带你用国产香橙派部署清华AI语言模型,比肩GPT,树莓派做得到吗?

遥遥领先!手把手带你用国产香橙派部署清华AI语言模型,比肩GPT,树莓派做得到吗?

2024-10-31 10:14:05 866

原创 GiantPandaCVARM Neon Intrinsics 学习指北:从入门、进阶到学个通透

Neon是ARM平台的向量化计算指令集,通过一条指令完成多个数据的运算达到加速的目的,常用于AI、多媒体等计算密集型任务。本文主要是一篇对ARM官方资料的导读。笔者根据自己Neon学习经历,将这些资料按照逻辑进行组织,以期减少读者的学习成本。本文讨论的是Neon 的intrinsics,而非assembly。intrinsics是以类似调用C语言函数的方法调用Neon,并由编译器生成最终的二进制代码,assembly则是手工嵌入Neon汇编,直接生成二进制代码。

2024-10-30 09:53:38 1117

原创 1-2B参数规模大模型使用心得及模型汇总

1-2B参数规模大模型使用心得及模型汇总

2024-10-29 09:39:45 1274

原创 使用 Ollama AI 在本地 Raspberry Pi 运行大语言模型

使用 Ollama AI 在本地 Raspberry Pi 运行大语言模型

2024-10-28 10:08:50 967

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除