数据聚合和分组运算的知识点梳理

本文详细介绍了Pandas库中的数据分组和聚合运算,包括groupby、aggregate、transform、apply等方法,以及如何创建透视表和交叉表。通过实例展示了如何使用这些功能进行数据统计和分析。
摘要由CSDN通过智能技术生成

数据聚合和分组运算的知识点梳理

在数据集准备好之后,通常的任务是计算分组统计或生成透视表,pandas提供了一个灵活的高效的groupby功能。

关键词: groupby 、 aggregate(使用自定义函数)、transform、apply、pivot_table、crosstab

一、数据分组

groupby

要素:需要分组的列、分组键、函数

示例1:
means = df[‘date1’].groupby([df[‘key1’],df[‘key2’]]).mean() # 对数据1这一列以key1 和key2作为双索引进行分组并
计算分组的平均值

1、分组键也可以是适当长度的数组
示例2:
states = np.array([‘Ohio’,‘California’,‘California’,‘Ohio’,‘Ohio’])
years = np.array([2005,2005,2006,2005,2006])
df = [‘data1’].groupby([states,years]).mean()

2、分组键也可以是列名
示例3:
df.groupby([‘key1’,‘key2]’).mean()

3、对分组进行迭代
示例:
for name,group in df.groupby(‘key1’):
print name
print group
你也可以对这些数据片段做任何操作,比如,将这些数据做成字典
示例:
pieces &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值