93.复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。
示例 1:
- 输入:s = "25525511135"
- 输出:["255.255.11.135","255.255.111.35"]
示例 2:
- 输入:s = "0000"
- 输出:["0.0.0.0"]
示例 3:
- 输入:s = "1111"
- 输出:["1.1.1.1"]
示例 4:
- 输入:s = "010010"
- 输出:["0.10.0.10","0.100.1.0"]
示例 5:
- 输入:s = "101023"
- 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
提示:
- 0 <= s.length <= 3000
- s 仅由数字组成
思路:
本题和其他字符串切割的题目类似,只是在切割点处应该用“.”连接起来得到一个IP地址,需要注意的是每个分割后的字段转换为数字后应该保持在0-255的范围内,此处注意点也是可以作为剪枝的方向。另外一个需要注意的点是前导0,如果在切割的时候发现存在前导0,此时不应该继续扩大字段,存在0的字段只能为0。
代码实现如下:
class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
self.result = []
if len(s) > 12: # IP最长长度为3*4(255.255.255.255),此处可剪枝
return self.result
self.backtracking(s, 0, [])
return self.result
def backtracking(self, s:str, start:int, path:List):
if len(path)==4 and start>=len(s):
self.result.append(".".join(path))
cur = 0
#zero = False # 本来想判断是否存在前导0,但是如果存在并不需要进一步判断,如果cur*10+s[i]等于0说明只能做切割
for i in range(start, len(s)):
cur = cur * 10 + int(s[i])
#if zero==False and cur==0:
if cur == 0:
#zero = True
path.append(str(cur))
self.backtracking(s, i+1, path)
path.pop()
return
if cur>0 and cur<=255:
path.append(str(cur))
self.backtracking(s, i+1, path)
path.pop()
if cur>255: #一个段最大为255,大于则剪枝
return
规范代码:
回溯(版本一)
class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
result = []
self.backtracking(s, 0, 0, "", result)
return result
def backtracking(self, s, start_index, point_num, current, result):
if point_num == 3: # 逗点数量为3时,分隔结束
if self.is_valid(s, start_index, len(s) - 1): # 判断第四段子字符串是否合法
current += s[start_index:] # 添加最后一段子字符串
result.append(current)
return
for i in range(start_index, len(s)):
if self.is_valid(s, start_index, i): # 判断 [start_index, i] 这个区间的子串是否合法
sub = s[start_index:i + 1]
self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)
else:
break
def is_valid(self, s, start, end):
if start > end:
return False
if s[start] == '0' and start != end: # 0开头的数字不合法
return False
num = 0
for i in range(start, end + 1):
if not s[i].isdigit(): # 遇到非数字字符不合法
return False
num = num * 10 + int(s[i])
if num > 255: # 如果大于255了不合法
return False
return True
回溯(版本二)
class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
results = []
self.backtracking(s, 0, [], results)
return results
def backtracking(self, s, index, path, results):
if index == len(s) and len(path) == 4:
results.append('.'.join(path))
return
if len(path) > 4: # 剪枝
return
for i in range(index, min(index + 3, len(s))):
if self.is_valid(s, index, i):
sub = s[index:i+1]
path.append(sub)
self.backtracking(s, i+1, path, results)
path.pop()
def is_valid(self, s, start, end):
if start > end:
return False
if s[start] == '0' and start != end: # 0开头的数字不合法
return False
num = int(s[start:end+1])
return 0 <= num <= 255
78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
思路:
将本题问题可以归结为分别对0~len(nums)个数组长度的切割,所以在回溯函数backtracking中加入length参数,并且从0~len(nums)循环输入进这个参数来进行调用,最后得到的结果数组即可。
代码实现如下:
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
self.result = []
for i in range(len(nums)+1):
self.backtracking(nums, 0, [], i)
return self.result
def backtracking(self, nums:List[int], start:int, path:List, length:int):
if length == 0:
self.result.append(path[:])
return
for i in range(start, len(nums)):
path.append(nums[i])
self.backtracking(nums, i+1, path, length-1)
path.pop()
规范代码:(简洁很多,需学习)
class Solution:
def subsets(self, nums):
result = []
path = []
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集,要放在终止添加的上面,否则会漏掉自己
# if startIndex >= len(nums): # 终止条件可以不加
# return
for i in range(startIndex, len(nums)):
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
- 输入: [1,2,2]
- 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
思路:
与上一题相比,多了一个去重步骤,和昨天的题目类似,在开始一个for循环的时候,判断遍历的元素是否与for循环中前一个元素相同,如果相同,说明此时在相同位置出现了同样的元素,所得到的结果必然也是相同的,所以此时应该忽略,寻找下一个不相同的元素。
代码实现如下:
class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
self.result = []
nums.sort()
for i in range(len(nums)+1): # i代表子集的长度(0~len(nums))
self.backtracking(nums, 0, [], i)
return self.result
def backtracking(self, nums: List[int], start:int, path:List, length:int):
if length == 0:
self.result.append(path[:])
return
for i in range(start, len(nums)):
if i>start and nums[i]==nums[i-1]: # 避免重复结果,一个循环内同元素可跳过,相当于起点是相同元素,不会得到不同结果
continue
path.append(nums[i])
self.backtracking(nums, i+1, path, length-1)
path.pop()
规范代码:
回溯 利用used数组去重
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
used = [False] * len(nums)
nums.sort() # 去重需要排序
self.backtracking(nums, 0, used, path, result)
return result
def backtracking(self, nums, startIndex, used, path, result):
result.append(path[:]) # 收集子集
for i in range(startIndex, len(nums)):
# used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过
# used[i - 1] == False,说明同一树层 nums[i - 1] 使用过
# 而我们要对同一树层使用过的元素进行跳过
if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
continue
path.append(nums[i])
used[i] = True
self.backtracking(nums, i + 1, used, path, result)
used[i] = False
path.pop()
回溯 利用集合去重
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
nums.sort() # 去重需要排序
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集
uset = set()
for i in range(startIndex, len(nums)):
if nums[i] in uset:
continue
uset.add(nums[i])
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
回溯 利用递归的时候下一个startIndex是i+1而不是0去重
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
nums.sort() # 去重需要排序
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集
for i in range(startIndex, len(nums)):
# 而我们要对同一树层使用过的元素进行跳过
if i > startIndex and nums[i] == nums[i - 1]:
continue
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()