软件工程经济学第六章作业
第五题
某计划网络图的活动明细表如表6.9所示,画出与表6.9对应的计划网络图

答:
注意表中是紧前工序

第七题
求解表6.9活动明细表对应的计划网络图G之关键路线与关键工序和工期。
答:
由第五题的计划网络图,可以得到正向计算过程如下

逆向计算过程如下:

由此可得,活动时间参数表如下:
活动 | ES | LS | EF | LF | R(i,j) | 关键活动 |
---|---|---|---|---|---|---|
a | 0 | 0 | 3 | 3 | 0 | √ |
b | 3 | 3 | 4 | 4 | 0 | √ |
c | 3 | 4 | 5 | 6 | 1 | × |
d | 4 | 4 | 8 | 8 | 0 | √ |
e | 3 | 8 | 6 | 11 | 5 | × |
f | 5 | 6 | 7 | 8 | 1 | × |
g | 8 | 9 | 10 | 11 | 1 | × |
h | 7 | 8 | 10 | 11 | 1 | × |
i | 8 | 8 | 13 | 13 | 0 | √ |
j | 13 | 13 | 15 | 15 | 0 | √ |
k | 10 | 11 | 14 | 15 | 1 | × |
l | 7 | 10 | 12 | 15 | 3 | × |
m | 15 | 15 | 18 | 18 | 0 | √ |
可以得到计划网络图的关键路线为 a → b → d → i → j → m a\rightarrow b\rightarrow d\rightarrow i\rightarrow j\rightarrow m a→b→d→i→j→m,关键工序为 { a , b , d , i , j , m } \{a,b,d,i,j,m\} {a,b,d,i,j,m}
工期为18个月。
第九题


(1)答:
由公式
μ
i
=
a
i
+
4
m
i
+
b
i
6
σ
i
2
=
(
b
i
−
a
i
6
)
2
\mu_i=\frac{a_i+4m_i+b_i}{6}\\ \sigma_i^2=(\frac{b_i-a_i}{6})^2
μi=6ai+4mi+biσi2=(6bi−ai)2
可得各工序的平均完成时间和方差如下表:
工序名 | a i a_i ai | m i m_i mi | b i b_i bi | μ i \mu_i μi | σ i 2 \sigma_i^2 σi2 |
---|---|---|---|---|---|
a | 4 | 5 | 6 | 5 | 1/9 |
b | 4 | 8 | 12 | 8 | 16/9 |
c | 1 | 2 | 3 | 2 | 1/9 |
d | 4 | 5 | 6 | 5 | 1/9 |
e | 4 | 5 | 6 | 5 | 1/9 |
f | 3 | 4 | 5 | 4 | 1/9 |
g | 3 | 4 | 5 | 4 | 1/9 |
h | 4 | 5 | 6 | 5 | 1/9 |
i | 3 | 6 | 9 | 6 | 1 |
j | 4 | 7 | 10 | 7 | 1 |
k | 4 | 8 | 12 | 8 | 16/9 |
l | 2 | 3 | 4 | 3 | 1/9 |
m | 4 | 8 | 12 | 8 | 16/9 |
n | 4 | 5 | 6 | 5 | 1/9 |
(2) 答
由第一问可得带完成时间的计划网络图
求解得到G的关键路径 C P = { 1 , 3 , 4 , 5 , 6 , 8 , 9 , 10 } CP=\{1,3,4,5,6,8,9,10\} CP={1,3,4,5,6,8,9,10},关键工序为 { b , f , g , h , k , m , n } \{b,f,g,h,k,m,n\} {b,f,g,h,k,m,n}
(3) 答
G的期望总工期和方差有:
μ
C
P
=
∑
(
i
)
∈
C
P
μ
i
=
8
+
4
+
4
+
5
+
8
+
8
+
5
=
42
月
σ
C
P
2
=
∑
(
i
)
∈
C
P
σ
i
2
=
16
9
+
1
9
+
1
9
+
1
9
+
16
9
+
16
9
+
1
9
=
52
9
月
2
所以
σ
C
P
=
2.404
月
\mu_{CP}=\sum_{(i)\in CP}\mu_i=8+4+4+5+8+8+5=42月\\ \sigma_{CP}^2=\sum_{(i)\in CP}\sigma_{i}^2=\frac{16}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{16}{9}+\frac{16}{9}+\frac{1}{9}=\frac{52}{9}月^2\\ 所以\sigma_{CP}= 2.404月
μCP=(i)∈CP∑μi=8+4+4+5+8+8+5=42月σCP2=(i)∈CP∑σi2=916+91+91+91+916+916+91=952月2所以σCP=2.404月
欲使
P
r
(
T
d
≤
T
0
)
=
0.95
P_r(T_d\le T_0)=0.95
Pr(Td≤T0)=0.95,即有
Φ
(
T
0
−
42
2.404
)
=
0.95
\Phi(\frac{T_0-42}{2.404})=0.95
Φ(2.404T0−42)=0.95,查N(0,1)表可知
T
0
−
42
2.404
=
1.64
\frac{T_0-42}{2.404}=1.64
2.404T0−42=1.64
从而有
T
0
=
1.64
×
2.404
+
42
=
45.94
月
=
3.83
年
T_0=1.64\times 2.404+42=45.94月=3.83年
T0=1.64×2.404+42=45.94月=3.83年
所以使该计划网络G完工的可能性达到0.95时该网络信息系统的工期目标T0=45.94月或3.83年
对应的计划难度系数为:
δ
0
=
2
×
T
0
−
μ
C
P
σ
C
P
=
2
×
45.94
−
42
2.404
=
3.278
\delta_0=2\times\frac{T_0-\mu_{CP}}{\sigma_{CP}}=2\times\frac{45.94-42}{2.404}=3.278
δ0=2×σCPT0−μCP=2×2.40445.94−42=3.278