过去大半年的时间里,系统性地学习了隐私计算,看的内容倾向于联邦学习这块,多方安全计算也有涉及一些,总体而言,密码学知识需要温故而知新,这半年来积累了七八万字的笔记,会慢慢放上来和大家一起讨论学习。
前言
2022年是隐私计算的元年,其未来很有可能发展成风口上的大产业。隐私计算有以下几个发展方向值得注意:
-
软硬件结合,兼顾软件上的隐私计算安全算法和硬件上的TEE可信执行环境。
-
模型和算法安全,隐私计算目前倾向于强调保护参与计算的数据,但是实现计算的模型和算法更需要保护。
-
计算方的公开可验证,目前的安全多方计算模式大多是,服务方提供现成的安全多方计算平台,用户提交数据到这个平台上完成计算,但是问题是,这个平台本身如何向用户说明不存在共模攻击的风险,让用户信任隐私计算平台,安心地提交数据。所以未来的一大方向是,参与计算方的公开可验证,
-
高效的多方协议,目前ABY3协议广泛运用于三方协议,在隐私计算领域,如果参与计算的每个节点算一方,那么势必需要其他一些多方协议,保证计算的安全和高效。
-
非对称算力下的计算,目前其实有一些技术方案是针对非对称算力条件的(ps:个人笔记本和大公司服务器合作运算,个人笔记本端必然会是计算瓶颈),比如说 PIR,PSI……,把计算的重担推到算力强的一端。隐私计算同样要考虑这个问题,在未来的商业环境中,如果碰到非对称算力,是否有其他更高效的计算方案解决瓶颈的问题。
隐私计算的研究要“市场化”,面对现实需求进行研究和开发,而不是空对论文理论!
截止到 2023 年 3 月,隐私增强技术的全面总结:全球四大类14种隐私增强技术的发展、应用和难点https://mp.weixin.qq.com/s/8f2mojNXazgOM8HFGAOfmg(数据混淆工具、加密数据处理工具、联邦分布式分析、数据责任化工具)
10月份新开了一个GitHub账号,里面已放了一些密码学,隐私计算电子书资料了,之后会整理一些我做过的、或是我觉得不错的论文复现、代码项目也放上去,欢迎一起交流!https://github.com/Ataraxia-github?tab=repositories