
(持续更新)数据分析实战项目100+例
文章平均质量分 91
本专栏以数据分析实战项目为主,包含大数据分析案例、机器学习项目、数据分析项目、预处理、可视化、数据库等实际应用项目、其中项目来源于:毕设选题、课程设计、业务需求、专业辅导1V1项目、日常接单、专业书籍案例项目等,项目来源于生活。旨在通过大量的实战,快速上手并应用于工作开发,为工作提供大量经验!
王小王-123
【私信必回】CSDN博客专家、内邀精英签约作者,CSDN年度优秀创作者,华为云享专家,阿里云专家博主、腾讯云、简书、InfoQ、51CTO等开源社区创作者。左手诗情画意,右手代码人生,欢迎一起探讨技术的诗情画意!
展开
-
基于协同过滤的景区旅游可视化与景区推荐系统(自动爬虫,地点可换)
本项目是一个综合性的旅游景区数据管理与分析推荐系统,集成了用户管理、数据可视化、景点信息管理、数据爬取等多项功能,旨在为旅游管理者和游客提供全面的景区信息服务和决策支持。系统的核心功能包括:用户登录与权限管理系统采用多层次的用户权限管理机制,包括普通用户、管理员等不同角色。用户需要通过登录界面进行身份验证,系统根据用户权限动态加载相应的功能模块。此外,系统还提供用户组管理功能,方便批量设置和管理用户权限。数据可视化大屏展示登录后,用户将进入一个富有吸引力的数据可视化大屏界面。原创 2024-10-13 22:04:28 · 1509 阅读 · 1 评论 -
基于多种机器学习的酒店客户流失预测模型的研究与实现
本项目数据来源于携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性。原创 2024-10-10 16:36:02 · 1541 阅读 · 0 评论 -
基于XGBoost的结核分枝杆菌的耐药性预测研究【多种机器学习】
本次研究旨在利用机器学习技术预测结核分枝杆菌对抗生素的耐药性,选择XGBoost(eXtreme Gradient Boosting)作为主要的建模算法。XGBoost是一种基于梯度提升(Gradient Boosting)机制的优化分布式梯度提升库,不仅在算法性能上具有优势,也在处理大规模数据集方面显示出高效性。近年来,中国在结核分枝杆菌耐药性预测和系统发育研究方面取得了显著进展,学者们在多方面开展了深入研究。.....近年来,国际上关于结核病(Tuberculosis,TB)耐药性预测的研究取得了显著进原创 2024-10-10 16:14:58 · 1610 阅读 · 0 评论 -
基于组合模型的公交交通客流预测研究
参数优化后的基础模型,即随机森林、XGBoost和LightGBM,在测试集上的性能指标表明,这些单一模型已经表现出了相当的预测能力,其中随机森林和LightGBM的R²值均为0.78,XGBoost稍低,为0.77。与之前通过网格搜索优化的单一模型相比,堆叠模型在均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和R²这些评估指标上都显示出了优异的性能,R²值达到了0.78,这表明堆叠模型能够解释目标变量方差的78%,而且均方根误差,其他的误差值都是有所降低。原创 2024-10-10 15:58:29 · 1279 阅读 · 0 评论 -
基于K-means和RFM模型的电商行业用户画像及商品个性化推荐研究
本研究基于阿里天池平台提供的某店铺2021年销售数据集进行深入分析,该数据集包含超过10万条交易记录,涵盖11个关键字段,包括订单编号、交易时间、支付平台、订单金额等信息。研究旨在通过数据挖掘和机器学习方法,构建精准的用户画像并实现个性化推荐。在数据预处理阶段,采用Python进行了系统性的数据清洗工作,包括重复值检测与删除、缺失值处理、异常值识别等。特别针对付款金额异常(如负值或大于下单金额)的记录进行了清理,并对类别变量(如"是否退款")进行了数值编码,为后续分析奠定了坚实基础。原创 2024-10-10 15:47:06 · 3317 阅读 · 0 评论 -
基于王者荣耀与英雄联盟的用户画像电竞选手价值评估
其中对于选手的价值评估方面国内的英雄联盟俱乐部选手挑选主要基于选手过去的国际赛事成绩和在顶级联赛中的表现,而国外对于英雄联盟俱乐部选手的挑选并没有具体的研究资料,综上所述,国内外对于英雄联盟俱乐部选手挑选的研究各有侧重,国内更注重选手的表现和成绩,而国外则更注重选手的个人实力和潜力。其中在2023年,西安体育学院的高研等人发表了对于电竞选手的最佳参赛年龄分析的文献[1],莱茵曼应用科学大学的Bahrololloomi Farnod等人发表了关于电竞选手表现的分析指标文献[2]。原创 2024-09-04 15:39:47 · 3152 阅读 · 0 评论 -
基于线性回归的公司员工满意度提升策略研究
近年来,我国员工满意度研究得到了重视,开始了对员工满意度的研究,但受制于研究样本个数太小、数学模型较复杂和抽象、缺乏相应的定量的实地调查等问题,使其研究的信度和效度大受影响,给实际操作造成一定困难。根据多维度的全面调查数据,生成详细的员工满意度报告给到企业进一步参考,包括总体满意度、总体满意率、满意率与满意度综合分析、 员工属性分析等多项内容,让员工满意度调查更专业有效,真正意义上能够为企业现行人力资源工作提供调整依据及优化方向。随着中国经济的飞速发展,企业间的竞争越来越激烈,人才成为了企业间竞争的关键。原创 2024-09-04 15:12:18 · 1154 阅读 · 0 评论 -
基于梯度提升系列算法对二手车价格预测分析与研究
2.1在当前的经济环境下,二手车市场正处于一个快速变化和不断发展的阶段。随着消费者对汽车更新换代需求的增加以及新车价格的上涨,越来越多的人开始转向二手车市场寻找性价比更高的选择。这种趋势不仅推动了二手车交易量的增长,也促进了二手车市场结构和交易模式的演变。传统的二手车交易通常依赖于地面交易市场和中介经销商,这种模式在很大程度上基于线下交易,买卖双方面临信息不对称的问题,导致交易效率低下,买方难以评估车辆真实状况,而卖方则可能面临定价难题。原创 2024-08-30 10:14:24 · 1364 阅读 · 0 评论 -
基于多种机器学习的房价预测研究【数据抓取、预处理、可视化、预测】
在当前经济发展背景下,房地产市场对于国家经济的稳定和发展起着至关重要的作用。佛山市作为中国广东省的重要城市之一,其房地产市场的波动受到了广泛关注。本研究旨在通过采用随机森林算法,对佛山市的房价进行预测和分析,以提供更为准确的市场趋势判断依据。首先,我们通过爬虫技术从链家网站收集了佛山市3000多条房产销售记录,这些数据包括房屋的多个特征,如小区名称、建成时间、成交价格、房屋户型、建筑面积等。随后,我们对数据进行了详细的预处理,包括数据清洗、缺失值处理、数据转换和特征工程等步骤,以保证数据质量和分析的准确性。原创 2024-08-30 10:07:27 · 2128 阅读 · 1 评论 -
基于深度学习的水稻病害虫检测设计与实现
本研究设计并实现了一个基于深度学习技术的水稻害虫识别系统,以提高水稻作物的管理水平和产量。研究背景强调了全球水稻产量和质量的重要性以及害虫侵袭对农业生产的影响。传统的害虫监测方法依赖人工经验,费时且不够精确,因此,发展自动化和智能化的识别系统显得尤为重要。在国内外研究现状分析中,许多学者已经采用深度学习模型如Faster R-CNN、VGG-16、ResNet-50等进行害虫图像识别,取得了较高的识别准确率。本文基于卷积神经网络(CNN)和迁移学习技术,构建了一个高效的害虫识别模型。原创 2024-08-30 09:52:52 · 2953 阅读 · 0 评论 -
基于Flask的新冠疫情信息可视化查询系统【案例模板】
爬虫疫情数据分析。通过构建前后端交互界面,实现信息的实时统计和可视化原创 2024-08-30 09:46:25 · 481 阅读 · 0 评论 -
基于协同过滤与情感分析的酒店评论分析与景区推荐系统实现
近年来,旅游行业风生水起,随着社会经济的快速发展,国民消费水平不断的提高,人们将物质上的满足不断转型到精神上的需求。外出旅游成为每一个人的精神需求和物质消费倾向。2016年12月7日,国务院印发《“十三五”旅游业发展规划》,并指出要把握好时代的契机,优化旅游产业结构,创新旅游行业,保障旅游质量。旅游行业的多元化发展和设计,不仅给相关部门带来了管理难度,也给消费者增加了选择的难度,旅游产品过多,不知道如何选择?产品质量如何?用户体验如何?大众评价又如何?原创 2024-08-30 09:23:14 · 601 阅读 · 0 评论 -
基于机器学习的酒店评论分析与推荐系统设计
6.1本研究旨在设计和实现基于机器学习的酒店评论分析与推荐系统。通过对酒店评论进行情感分析和特征提取,可以准确地评估评论的质量和情感倾向。基于此,可以构建个性化的推荐系统,为用户提供符合其偏好和需求的酒店推荐。在研究过程中,采用了文本挖掘技术、情感分析方法和机器学习算法,通过实验验证了系统的有效性和可行性。在酒店评论分析方面,采用了先进的文本挖掘技术和情感分析方法,对酒店评论进行了情感倾向的判断和特征提取。通过构建情感分析模型,能够准确地识别评论中的正面、负面或中性情感,并提取出关键词和短语作为特征。原创 2024-08-30 09:11:29 · 2896 阅读 · 0 评论 -
基于火锅餐饮大数据的精准推荐系统【协同过滤、前后台信息管理、万能推荐系统】
随着数字化时代的到来和大数据技术的迅速发展,各行各业都在探索如何利用海量数据提高服务质量和运营效率。在餐饮行业,尤其是火锅领域,商家面对的挑战是如何在众多竞争者中脱颖而出,而消费者的挑战则是如何在众多选择中找到符合自己口味和预期的火锅店。这些挑战促使开发一个能够分析火锅餐饮大数据、提供精准推荐的系统成为必要,旨在通过技术手段提升用户体验和商家的服务质量。原创 2024-08-29 18:11:58 · 2024 阅读 · 0 评论 -
基于分布式计算的电商系统设计与实现【系统设计、模型预测、大屏设计、海量数据、Hadoop集群】
本研究以开源的淘宝用户行为数据为基础,展开分布式集群的大数据分析,旨在通过高效的数据处理和分析提高电商系统的决策支持能力。所用数据覆盖了从11月18日至12月18日的一个月时间,共计约100万条用户行为记录,每条记录详细记录了用户的每一次行为。研究首先涉及将这些大规模数据上传到Hadoop的HDFS(分布式文件系统)中,利用Hadoop的Flume组件自动加载数据至Hive数据库,为后续的大规模数据分析做好准备。原创 2024-08-28 15:49:50 · 1463 阅读 · 0 评论 -
基于大数据下的电信客户挽留的设计与实现【统计建模、XGBoost、随机森林、单因素方差分析、卡方检验】
随着大数据技术的不断发展和电信市场竞争的加剧,客户挽留已经成为电信企业的重要任务。本文旨在设计和实现一种基于大数据的电信客户挽留系统,以提高客户满意度和忠诚度。利用大数据技术分析和识别导致客户流失的关键因素。建立模型预测哪些客户有流失的风险,预测流失趋势,以便提前采取行动。根据分析结果,设计有效的客户挽留策略,以减少用户流失。通过理解客户需求和行为,改进服务,提高客户满意度。随着通信行业竞争的加剧,客户挽留成为业务成功的关键。此研究帮助电信公司更好地理解客户需求,减少流失率,提高市场竞争力。原创 2024-08-28 15:40:50 · 1255 阅读 · 0 评论 -
基于大数据Hadoop技术对网上商城用户消费分析
本研究深入剖析了网络商城中消费者的购买行为,探究了电子商务平台在数字化时代的重要性及其广泛普及的现象。互联网的飞速发展使得网上购物成为民众日常生活中不可或缺的一部分,因此,对用户消费行为的精确把握对于商城的发展起着决定性的作用。文中详尽地描述了大数据技术在分析网上商城消费者行为方面的应用。凭借大数据技术,我们能够搜集、储存及处理大量的用户信息,这些信息涵盖了用户的浏览历史、购买经历以及点击行为等方面。原创 2024-08-28 15:25:53 · 1378 阅读 · 0 评论 -
基于大数据分析景区消费行为影响因素研究【消费等级预测、携程,去哪网数据抓取】
网络爬虫,亦称为网络蜘蛛或网络机器人,是一种自动化的网络程序,其核心功能在于浏览互联网并从中提取信息。这一过程通常涉及网络爬虫按照一定的规则自动访问网页,分析页面内容,然后根据预设的逻辑寻找新的链接继续访问,如此循环往复,形成一张庞大的网络数据网。网络爬虫的应用广泛,从搜索引擎的数据索引到数据挖掘和市场分析,都离不开它们的身影。原创 2024-08-28 15:15:10 · 2247 阅读 · 0 评论 -
基于深度学习的游客满意度分析与评论分析【情感分析、主题分析】
随着物联网、云计算、虚拟现实等新兴技术的快速发展,大数据越来越广泛的运用到各领域中,不同于传统的数据分析,大数据分析不仅仅能够对一些大量的、简单的数据进行处理,通能够处理一些复杂的数据,例如文本数据、声音数据以及图像数据等,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低的特征。通过大数据分析,帮助旅游企业或景区获取游客各个方面信息,从而更加准确地了解游客的消费行为、偏好、需求,发现游客满意度的影响因素,制定针对性的改进措施,提升游客满意度。近年来我国经济的快速发展和人民生活水平的不断提高,旅原创 2024-08-28 14:51:43 · 4921 阅读 · 1 评论 -
基于大数据的企业人力资源分析与可视化【含机器学习预测】
接着,在数据预处理阶段,针对薪资字段进行了细致的处理,计算得出薪资范围的平均值,同时对经验、学历、公司规模等字段进行了标准化处理,为后续的数据分析和建模做好准备。该柱状图展示了不同地区的大数据职位数量,为我们提供了一幅关于大数据领域人才需求地理分布的直观...............................可以看出,这些地区的企业和机构可能更加重视大数据技术的应用和发展,也更加倾向于利用大数据技术来驱动业务创新和决策优化。随着全球化的加深和技术的飞速发展,企业的竞争格局正在发生深刻的变化。原创 2024-08-28 14:28:08 · 1624 阅读 · 0 评论 -
基于大数据的水资源管理与调度优化研究【Web可视化、灰色预测、大屏设计】
本研究旨在分析年度水资源与供水用水情况数据,并通过灰色预测模型预测未来三年的供水总量,以提高对数据变化趋势的认识和理解。系统采用Python作为主要开发语言,并通过pandas对数据进行处理和分析。首先,研究从公开数据源收集国家年度水资源与供水用水情况数据,包括供水总量(亿立方米)、水资源总量(亿立方米)、地表水供水总量(亿立方米)等多个情况数据。数据收集涵盖了2014年至2022年的时间范围,确保了数据的丰富性和多样性。收集到的数据经过预处理和清洗,以适用于后续的分析和建模。在数据处理阶段,本研究使用原创 2024-08-28 14:06:03 · 1556 阅读 · 0 评论 -
基于YOLOV7(8)的安全帽检测系统(深度学习模型+UI界面代码+训练数据集)
2.1YOLOv7算法是一种目标检测的算法,与之相比之前的YOLO[15]系列它使用了高效聚合网络,也就是网络结构中出现的ELAN模块,其有效地加强了网络的学习能力。主要是通过深度学习技术实现对图像中目标物体的快速、精准检测[16]。作为YOLO系列的成员,YOLOv7在保持高速检测的同时,也进一步的提升了检测的精度和性能。.........2.1.2PyTorch是Python当中一个开源的深度学习框架,这使得开发者和研究人员们可以使用Python来轻松训练和设计神经网络。原创 2024-08-28 10:08:48 · 1409 阅读 · 0 评论 -
基于spark的电力能耗数据分析系统的设计与实现
系统开发概述1.1 技术栈后端:Python, Django框架前端:HTML, CSS, JavaScript, Vue.js数据库:MySQL数据采集:Scrapy爬虫可视化:Echarts开发工具:PyCharm, Navicat1.2 系统架构基于B/S架构采用Python作为后端语言使用Echarts技术展示可视化大屏系统功能模块2.1 电力信息管理实现电力信息的爬取和管理2.2 城市管理对城市数据进行增删改查2.3 电力能耗数据分析城市和月份搜索。原创 2024-08-21 14:43:08 · 2030 阅读 · 0 评论 -
基于机器学习的二手房房价数据分析与价格预测模型
因此,探索二手房市场的特点和规律,不仅可以补充和完善房地产市场理论体系,还可以为相关领域的研究提供新的视角和思路。首先,通过精心设计的网络爬虫技术,本研究绕开了网站的反爬措施,如Cookies和headers伪装,这不仅显示了对现代网络技术的深入理解和应用能力,也体现了在数据采集过程中对效率和伦理的双重考量。从传统的统计分析方法到现代的机器学习技术,从宏观经济因素到微观市场特征,这些研究不仅为二手房市场的参与者提供了宝贵的信息和建议,也为房价预测的研究提供了丰富的理论和实践基础。原创 2024-08-21 14:19:27 · 5211 阅读 · 3 评论 -
基于数据挖掘的消费者商品交易数据分析可视化与聚类分析
基于python的消费者商品交易数据分析与可视化主要包含以下内容:首先探讨如何从各种渠道获取消费者商品交易数据,例如电子商务网站的API、公开数据集、实验室调研等。并在此基础上进行数据清洗、数据预处理等,如处理缺失值、异常值和重复值,并对数据进行归一化、标准化或特征选择等操作。其次需要通过消费者的年龄、性别等特征分析消费者商品交易的信息,通过关联规则等方法挖掘发现消费者购买的相关性。通过聚类分析等方法将消费者划分为不同的群组,以便更好地了解他们的行为模式和偏好。原创 2024-08-21 14:13:16 · 1111 阅读 · 1 评论 -
基于网络小说的多维度数据分析与可视化系统
1、流行趋势预测:通过作者名称、作品、标签、类型等数据,可以分析出哪些类型的网络小说更受欢迎,哪些作者的作品更受欢迎,从而预测出未来可能会流行的网络小说类型和作者。(1)文案词云图: 提取小说中情感词语,并以词云图的形式进行展示,可以直观地看出小说的情感倾向。原创 2024-08-21 11:45:38 · 1047 阅读 · 0 评论 -
基于Python的计算机职位数据分析与薪资预测【随机森林、XGBoost、catboost】
爬虫技术在当前的数据驱动社会中,已经成为获取和分析海量网络信息的重要工具。爬虫,亦称网络爬虫或网络蜘蛛,是一种按照既定规则自动访问网页并获取网页内容的程序。其原理和应用范围广泛,在学术研究、商业分析、信息检索等多个领域都具有重要意义。爬虫技术的核心在于其能够高效地遍历和抓取互联网中的公开数据,从而为后续的数据处理和分析奠定基础。1.多维度数据采集与处理.......2.详尽的特征工程......3.多模型比较与自定义评估.......模型的应用与优化.......5.数据可视化与结果展示。原创 2024-08-20 09:30:53 · 1903 阅读 · 0 评论 -
基于Python的二手车爬虫及价格预测可视化研究【多种机器学习对比研究】
首先,我们通过编写Python爬虫程序,从在线二手车交易平台抓取了包括车辆品牌、型号、年份、行驶里程、所在城市等在内的2万多条二手车数据。接下来,在数据预处理阶段,我们对数据进行了清洗、去重和异常值处理,确保了分析的准确性和可靠性。在数据分析和可视化阶段,我们采用了Pandas和Matplotlib库,对二手车的价格、品牌、行驶里程等关键指标进行了深入分析,并通过直观的图表展示了不同因素对二手车价格的影响。进一步地,本研究采用了多种机器学习算法构建二手车价格预测模型,包括线性回归、多层感知机、支持向量机和原创 2024-08-19 10:14:22 · 2587 阅读 · 0 评论 -
基于B站的热门视频数据分析与情感分析【关联性、主题、情感分析】
本文采用Python中的网络爬虫技术,从视频平台(例如YouTube、Bilibili、TikTok等,以B站为例)中提取视频数据。在分析了不同类型网站的特点后,选择B站作为适合的数据源。借助网络爬虫来获取网页的内容,并从这些内容中抽取必要的视频信息,以便进行数据的收集工作。为了得到更高质量的视频,需要在采集到的视频序列中检测出大量的相似点。对收集到的数据进行清理,移除重复的部分、遗漏的数据和异常的数据。对必要的数据实施分词处理、剔除废弃词汇等初步处理步骤。从视频资料里,可以获取诸如视频标题、点赞、播放原创 2024-08-19 10:03:30 · 4409 阅读 · 0 评论 -
基于web框架的协同过滤的美食推荐系统【数据爬虫、管理系统、数据可更新、样式可调整】
随着网络和数字媒体的发展,在线美食平台的资源日渐丰富。如何让用户在广博的美食世界里快速找到自己喜欢的美食成为困难。针对这种现象,美食推荐系统应运而生。本文对目前使用最广泛的推荐算法——协同过滤推荐算法展开研究,并实现该算法的两种模型,即基于用户的协同过滤和基于物品的协同过滤为用户提供个性化美食推荐服务,让用户方便、快速的找到自己感兴趣的美食。系统利用爬虫技术在美食天下网中获取美食相关美食数据信息,通过协同过滤算法将相关的数据生成相应的推荐结果,可以直观形象地推荐给用户。原创 2024-08-16 17:13:51 · 1565 阅读 · 0 评论 -
基于Hadoop平台的大学生上网时间段分析系统
JSON全称为JavaScript Object Notation,即JavaScript的对象表示法。它是一种轻量级别的文本数据的交换格式,并且,它独立于各种语言和平台,例如:php,vue,.net等编程语言,它们都支持json。Json同时也很容易理解,技术人员可以很快的就上手使用它。原创 2024-08-16 16:27:13 · 1005 阅读 · 0 评论 -
Python爬虫技术与K-means算法的计算机类招聘信息获取与数据分析
首先,对于求职者,尤其是计算机及相关专业的学生和从业者,本研究提供的市场分析能够帮助他们更清晰地认识当前的就业形势,了解不同职位的需求特点、薪资水平和技能要求,从而做出更合理的职业规划和决策。收集到的原始数据经过预处理阶段的清洗和格式化, 此外,通过数据可视化技术,我们对分析结果进行了直观展示,包括地区分布的热力图、薪资水平的箱线图、行业需求的柱状图等,使求职者和雇主能够快速理解当前就业市场的动态和特点。Python,以其简洁的语法、丰富的库资源和强大的社区支持,为爬虫技术的实现提供了一个理想的平台。原创 2024-08-16 16:08:24 · 2069 阅读 · 0 评论 -
基于hive的海鲜交易数据分析系统设计与实现【hadoop、Flask、某东爬虫、sqoop、flume、mysql、hdfs】商品可换
为深入探究海鲜交易市场的数据特性并提供直观的分析服务,本研究设计并实现了一套基于Hive的海鲜交易数据分析体系。该体系从京东等电商平台获取海鲜商品信息,通过Python编写的爬虫程序完成数据采集,并运用数据预处理技术进行清洗和整理,为后续分析奠定基础。在数据存储方面,选用Hadoop分布式文件系统(HDFS)存储大规模数据集,flume自动导入数据,并利用Hive构建数据仓库,sqoop导出数据至MySQL,实现了海鲜交易数据的全流程高效管理与查询。原创 2024-08-16 11:32:54 · 2439 阅读 · 0 评论 -
基于Hadoop的微博社交媒体用户大数据分析【海量数据】
本项目基于hadoop的社交媒体用户进行大数据分析,数据来源于微博用户信息,共计二十余万条,通过数据预处理之后,再将结构化数据上传到hadoop进行大数据分析,通过MapReduce执行系列分析语句,完成数据分析并通过sqoop将结果指标导出到MySQL,在利用Pyecharts进行连接数据源进行编程可视化,最终将可视化渲染为web界面,完成分析。过程细节涉及过多,有大量的细致语法实现,需要仔细的推敲。原创 2024-08-16 10:03:15 · 641 阅读 · 0 评论 -
基于hadoop的智慧校园数据共享与交换平台的设计与实现【Django框架、scrapy爬虫框架】
随着信息技术的发展,智慧校园建设逐渐成为高校发展的重要方向之一。在数据共享和交换过程中,不同部门和系统之间的数据存在差异和不一致性的情况,可能会导致数据质量的下降和数据处理的困难。Hadoop是一个开源的分布式计算框架,对于大数据的处理和存储具有优势,但其复杂的架构和底层技术要求对研究者的技术水平有一定要求,导致研究过程中遇到一定的技术困难。智慧校园是指通过信息技术手段,将校园内的各种信息资源进行集成和共享,实现校园内部各个子系统之间的互联互通,提高校园管理效率,为师生提供更便利、安全、高效的校园服务。原创 2024-08-15 10:08:48 · 1653 阅读 · 0 评论 -
基于深度学习的图像特征优化识别复杂环境中的果蔬【多种模型切换】
基于深度学习的图像识别技术广泛应用果蔬分类和质检,助力智慧农业发展。当前果蔬图像识别研究集中在单一或无背景环境的图像,通过纹理、颜色等特征提取,利用浅层学习技术,实现图像识别。本项目聚焦果蔬运输、超市零售复杂环境中,包装袋和保鲜膜内附水珠等视觉挑战下的果蔬精准识别。运用深度学习方法结合图像去雾、去雨水、去模糊等图像优化算法,设计基于深度学习的果蔬图像识别模型,并进行模型识别效果评价。原创 2024-08-15 09:59:17 · 1368 阅读 · 0 评论 -
基于Hadoop的网购笔记本电脑大数据分析与可视化系统
本项目首先通过爬虫获取京东电脑数据,爬虫比较OK,十分具有学习意义,数据可以不断地获取,智能化爬虫,遵守协议,属于良性获取数据。然后进行数据预处理,将脏数据进行结构化处理,保证大数据Hadoop可以复用采用Hadoop进行大数据分析 设计组件集群 hdfs HIve flume sqoop MySQL 等最后利用Python调用Echarts 使用Pyecharts进行web可视化。原创 2024-08-13 16:27:57 · 2136 阅读 · 1 评论 -
基于Hadoop的汽车大数据分析系统设计与实现【爬虫、数据预处理、MapReduce、echarts、Flask】
本项目旨在构建一个综合性的数据处理和可视化系统,通过整合多种技术高效处理大规模数据。首先,通过网络爬虫从各个来源收集海量数据。这些数据包括标题、品牌、车型、年份、里程、城市、环保标准、售价、首付以及新车含税价等关键字段。这些原始数据被批量收集,需要在有效分析和可视化之前进行处理。数据收集完成后,接下来是数据预处理阶段。此阶段包括数据清洗、处理缺失值以及将数据格式化为便于上传到Hadoop的结构化格式。之所以选择Hadoop,是因为它能够管理和处理分布在多个节点上的大规模数据集。原创 2024-08-12 15:40:23 · 3437 阅读 · 0 评论 -
基于大数据的气象数据分析与可视化系统设计与实现【爬虫海量数据,LSTM预测】
本课题主要针对气象数据进行分析以及可视化及空气质量预测,通过爬取https://tianqi.2345.com/ 网站河南省下所有的市区2018-2024年的所有气象数据,共计4-5万条有效数据,结合大数据平台Hadoop进行hive大数据分析,分析出的指标借助Pyecharts实现数据可视化分析,提供直观,交互丰富,可高度个性化定制的数据可视化图表,并提供气温对比、空气质量分数、质量等级、天气情况、降雨量等多维度方面的可视化分析,最后采用深度学习LSTM长短期神经网络对空气质量进行回归预测,为捕捉气象指标原创 2024-08-09 16:15:36 · 3482 阅读 · 3 评论 -
基于Hadoop的国内手机销售大数据分析与可视化研究【百万数据集】
本研究聚焦于京东2023年11月手机销售数据的深入分析,旨在探究消费者行为模式和市场动向。我们收集了近93万条销售记录,包含27个关键字段,如订单时间、支付状态、手机型号等,同时确保了用户隐私的保护。数据处理环节中,我们首先进行了数据清洗,包括去重、填补缺失值和标准化字段名,以保证分析的准确性。随后,我们搭建了基于Hadoop的数据处理架构,利用HDFS存储海量数据,通过Flume实现日志的自动采集,并借助Hive进行大规模数据分析。原创 2024-08-09 16:02:31 · 2845 阅读 · 0 评论