目录
摘要 5
序言 6
第一章 研究意义 7
1.1 研究意义 7
1.2 国内外研究现状 7
1.2.1 国内研究现状 7
1.2.2 国外研究现状 8
第二章 研究过程 9
2.1 图片识别 9
2.2 调用百度API 10
2.3 卷积神经网络 11
2.3.1 三维体积的神经元 12
2.3.2 卷积神经网络分层 12
2.4 研究过程 13
第三章 成果展示 13
3.1 效果展示 13
3.2部分核心代码展示 15
第六章 总结 16
摘要
图像识别技术已经应用于我们生活的方方面面,带给人们极大便利。物品识别的技术可以帮助人们迅速识别想知道的物品,在日常生活中,人们经常会遇到不认识的物品,或者对应品牌,物品识别技术将可以发挥重要作用;物品识别在很大程度上方便了日常生活,例如百度与淘宝可以直接拍照寻找相似词条或者产品。以上这些同时反映了我国科技水平稳步提升。
图像识别是人工智能的一个重要领域,图像识别的方法有很多,针对不同的具体方面的问题应合理采用不同的方法。图像识别的基础来自于人的图像识别能力,每个图像都有它的特征,对图像进行边界特征的提取并且设置窗口采用迭代计算像素点,具有较好的识别度和很高的实用性。
本文介绍了一种基于深度学习的AI智能识物的方法,基于深度学习的目标识别算法研究具有重大的意义,深度学习的目标识别算法对于未来能够使用目标检测和图像识别的手段运用于物联网,智能设备,生物制药等多领域有非常大的作用。
关键词:深度学习 图像识别 人工智能 特征
序言
当前是信息时代,信息的获得,加工,处理以及应用都有了飞跃提升,人们认识到世界的重要知识来源就是图像信息,在很多场合,图像所传送的信息比其他形式的信息更丰富,真切和具体。尤其是近年来,以图像,图像,视频等大容量为特征的图像数据处理广泛应用于医学,交通,自动化工业等领域。
深度学习是机器学习中的一个新的研究领域,通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向,引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动了目标和行为识别的研究,推动了深度学习及其在目标和行为识别中的新进展。基于这个发展趋势,我们小组选择了基于深度学习的图像识别的研究。
第一章 研究意义
1.1 研究意义
在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文