深度学习代码|Torch 模型搭建整体流程 code

本文详细比较了Torch和TensorFlow在图创建、代码调试、灵活性、设备管理和深度学习模型整体流程(包括数据读入、定义模型、训练和测试)上的差异。通过实例展示了如何在PyTorch中使用Dataset和DataLoader进行数据加载和模型构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Torch 和 Tensorflow 的区别

  1. 图创建:创建和运行计算图可能是两个框架最不同的地方。
    • 在 pyTorch 中,图结构是动态的,这意味着图在运行时构建。
    • 而在 TensorFlow 中,图结构是静态的,这意味着图先被“编译”然后再运行。
  2. 代码调试
    • pyTorch 中简单的图结构更容易理解,更重要的是,还更容易调试。调试 pyTorch 代码就像调试 Python 代码一样,可以使用 pdb 并在任何地方设置断点。
    • 调试 tensorFlow 代码与pytorch相比更为困难,要么得从会话请求要检查的变量,要么学会使用 tensorFlow 的调试器。
  3. 灵活性
    • pytorch:动态计算图,数据参数在 CPU 与 GPU 之间迁移十分灵活,调试简便;
    • tensorflow:静态计算图,数据参数在 CPU 与 GPU 之间迁移麻烦,调试麻烦。
  4. 设备管理
    • pytorch:需要明确启用的设备
    • tensorflow:不需要手动调整,简单

深度学习模型整体流程

import torch
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader

(一)数据读入

PyTorch数据读入是通过Dataset+DataLoader的方式完成的:

  • Dataset定义好数据的格式和数据变换形式
  • DataLoader用iterative的方式不断读入批次数据。

定义数据集Dataset

  • init: 用于向类中传入外部参数,同时定义样本集。
  • getitem: 用于逐个读取样本集合中的元素,可以进行一定的变换,并将返回训练/验证所需的数据。
  • len: 用于返回数据集的样本数
class MyDataset(Dataset):
	def __init__(self,data,targets):
		self.data=data
		self.targets=targets
	def __getitem__(self,index):
		x=self.data[index]
		y=self.targets[index]
		return x,y
	def __len__(self);
		return len(self.data)

准备数据

train_data=...
train_targets=...
test_data=...
test_targets=...

在构建训练和测试集完成后,需定义DataLoader类,以便在训练和测试时加载数据

  • train_data:表示来自哪个Dataset,也就是我们上面定义好的类
  • batch_size:表示每一批加载多少数据
  • shuffle:是说上面类里面的getitem就不是从0开始,可能是打乱的来取数据
  • num_workers:用多少个线程来读
  • drop_last:是否对应到最后一个数据,因为一般导入数据最后可能是导不满的
  • pin_memory:增加内存占用但是会让程序运行快(用空间换时间)
train_dataset=MyDataset(train_data,train_targets)
test_dataset=MyDataset(test_data,test_targets)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)

(二)定义模型

  1. 模型构建

pytorch super 作用:调用父类初始化函数,用于类的继承(具体可以参考这篇文章:Pytorch构建网络模型时super(class, self).init()的作用

class MyModel(nn.Module):
	def __init__(self):
		super(MyModel,self).__init__()
		self.fc1=nn.Linear(784,128)
		self.fc2=nn.Linear(128,10)
	def forward(self,x):
		x=x.view(-1,784)
		x=nn.functional.relu(self.fc1(x))
		x=self.fc2(x)
		return x
  1. 定义超参数和训练参数
    • batch_size:一批的数据的量
    • lr:初始学习率(初始),每次参数更新的步长
    • max_epochs:训练次数(轮数)
learning_rate=0.01
batch_size=32
num_epochs=10
log_interval=100
  1. 定义模型、损失函数和优化器
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model=MyModel().to(device)
criterion=nn.CrossEntropyLoss()
optimizer=torch.optim.SGD(model.parameters(),lr=learning_rate)

(三)训练模型

for epoch in range(num_epochs):
	for batch_idx,(data,targets) in enumerate(train_loader):
		data,targets=data.to(device),targets.to(device)
		optimizer.zero_grad() #防止梯度累加,要清零
		outputs=model(data) #前向传播,得到输出output
		loss=criterion(outputs,targets)
		loss.backward() #反向传播回去
		optimizer.step() #用优化器更新权重
		if (batch_idx+1)%log_interval==0:
			print(f'Epoch [{epoch+1}/{num_epochs}], '
			      f'Step [{batch_idx+1}/{len(train_loader)}], '
			      f'Loss:{loss.item():.4f}')

(四)测试模型

与训练模型的四点不同:

  • 模型定义的不同
  • 优化器要不要做0初始化-- optimizer.zero_grad()
  • 损失函数要不要回传-- loss.backward()
  • 优化器要不要做每步的权重更新-- optimizer.step()
model.eval()
correct=0
total=0

with torch.no_grad(): #表示不做梯度计算,如果不加这个会报memory的错误
	for data,targets in test_loader:
		data,targets=data.to(device),targets.to(device) #之前model已经放到cuda了,所以data和targets也要放到cuda
		outputs=model(data)
		_,predicted=torch.max(outputs.data,1) ##对输出的output求最大,找到他是哪一类
		total+=targets.size(0)
		correct+=(predicted==targets).sum().item()

print(f'Test Accuracy:{100 * correct / total:.2f}%')

参考:pytorch主要组成模块之:动手完成简单的深度学习模型搭建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值