自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 学习笔记 — Datawhale数据分析入门Task05

四、数据建模、计算、分析—建模

2022-01-21 00:58:20 626

原创 学习笔记 — Datawhale数据分析入门Task04

五、数据可视化1、【思考】最基本的可视化图案有哪些?分别适用于那些场景?可视化的场景可以分为五大类:展示趋势变化、展示分布关系、展示相关关系、展示排序信息、展示组成关系。 柱状图 反映一个类别变量和一个数值变量之间的关系 散点图 反映数值型变量之间的相关性 折线图 反映数据随时间变化的趋势 饼图 反映数据的部分的占比情况 直方图 只接收数值类型的变量数据,反映数据的分布情况 【matplotlib可视化】场景案例汇总_rightgo

2022-01-17 19:52:00 535

原创 学习笔记 — Datawhale数据分析入门Task03

二、数据预处理—数据集的联合与合并三、数据的转换—数据聚合与分组操作

2022-01-14 20:49:44 600

原创 学习笔记 — Datawhale数据分析入门Task02

二、数据预处理—数据清洗及特征处理我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。

2022-01-13 06:04:48 627

原创 学习笔记 — Datawhale数据分析入门Task01

数分基本流程:1、数据载入、读取2、数据预处理3、数据转换4、数据建模、计算、分析5、结果可视化呈现

2022-01-11 20:13:50 1167

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除