基于支持向量机和BP神经网络的混凝土抗压强度预测

 

1. 背景介绍

混凝土抗压强度是工程领域中的一个重要指标,对建筑质量和安全性至关重要。然而,由于混凝土成分复杂,其抗压强度的预测是一项具有挑战性的任务。传统方法通常依赖于大量实验数据,而机器学习方法能够通过建模非线性关系,快速、准确地完成预测。

本文结合 支持向量机 (SVM)BP神经网络,对混凝土抗压强度进行建模预测,并展示了实验结果和性能分析。


2. 数据说明

实验数据集包括混凝土的多种特性(如水灰比、骨料类型等)及其抗压强度。我们将数据分为 训练集测试集

  • 训练集:用于模型学习规律;
  • 测试集:用于评估模型的预测性能。

数据预处理包括随机划分、归一化等操作,以提高模型的训练效率和预测精度。


3. 技术实现

3.1 支持向量机 (SVM) 回归

SVM 是一种强大的机器学习算法,尤其擅长解决高维非线性问题。本文选用径向基函数 (RBF) 作为核函数,通过网格搜索优化模型参数,最终得到最佳的 惩罚系数 C核参数 G

% 参数网格搜索
c_range = -10:0.5:10;
g_range = -10:0.5:10;
[best_c, best_g, min_error] = optimizeSVMParameters(p_train_norm, t_train_norm, c_range, g_range);

% 训练 SVM 模型
svm_model = fitrsvm(p_train_norm, t_train_norm, ...
    'KernelFunction', 'rbf', ...
    'KernelScale', 1/sqrt(best_g), ...
    'BoxConstraint', best_c, ...
    'Epsilon', 0.01, ...
    'Standardize', true);

3.2 BP神经网络

BP神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值