1. 背景介绍
混凝土抗压强度是工程领域中的一个重要指标,对建筑质量和安全性至关重要。然而,由于混凝土成分复杂,其抗压强度的预测是一项具有挑战性的任务。传统方法通常依赖于大量实验数据,而机器学习方法能够通过建模非线性关系,快速、准确地完成预测。
本文结合 支持向量机 (SVM) 和 BP神经网络,对混凝土抗压强度进行建模预测,并展示了实验结果和性能分析。
2. 数据说明
实验数据集包括混凝土的多种特性(如水灰比、骨料类型等)及其抗压强度。我们将数据分为 训练集 和 测试集:
- 训练集:用于模型学习规律;
- 测试集:用于评估模型的预测性能。
数据预处理包括随机划分、归一化等操作,以提高模型的训练效率和预测精度。
3. 技术实现
3.1 支持向量机 (SVM) 回归
SVM 是一种强大的机器学习算法,尤其擅长解决高维非线性问题。本文选用径向基函数 (RBF) 作为核函数,通过网格搜索优化模型参数,最终得到最佳的 惩罚系数 C 和 核参数 G
% 参数网格搜索
c_range = -10:0.5:10;
g_range = -10:0.5:10;
[best_c, best_g, min_error] = optimizeSVMParameters(p_train_norm, t_train_norm, c_range, g_range);
% 训练 SVM 模型
svm_model = fitrsvm(p_train_norm, t_train_norm, ...
'KernelFunction', 'rbf', ...
'KernelScale', 1/sqrt(best_g), ...
'BoxConstraint', best_c, ...
'Epsilon', 0.01, ...
'Standardize', true);
3.2 BP神经网络
BP神经网络