题目
牛牛重新定义了斐波那契数列,牛牛定义f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b, 现在给定初始值 a, b,现在求第n项f(n)%1000000007的值。
其中 1<=|x|, |y|, n<=10^9
示例1
输入:1,2,3
输出:1
说明:f(2)=f(3)+f(1), 所以f(3) = f(2)-f(1)=2-1=1
示例2
输入:-1,-2,3
输出:1000000006
说明:同样例1:f(3)=-1%1000000007=1000000006
备注:
最终的答案应是一个非负整数,如-1 % 1000000007 = 1000000006
题解
这道题看上去比较复杂,其实本质上是一个以6为周期的数组
∵ f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b;
∴ f(n+1) = f(n) - f(n-1);
f(1)=a; f(2)=b; f(3) = b-a; f(4) = -a; f(5) = -b; f(6) = a-b;f(7) = a…
可知,该数列是以6为周期的循环数列。
故只需求出前六个数字即可。
import java.util.*;
public class Solution {
/**
*
* @param a int整型
* @param b int整型
* @param n int整型
* @return int整型
*/
public int solve (int a, int b, int n) {
// write code here
int MOD = 1000000007;
int result = 0;
switch(n%6) {
case 0:
result = (a-b) % MOD;
break;
case 1:
result = a % MOD;
break;
case 2:
result = b % MOD;
break;
case 3:
result = (b-a) % MOD;
break;
case 4:
result = (-a) % MOD;
break;
case 5:
result = (-b) % MOD;
break;
}
if(result < 0) {
result += MOD;
}
return result;
}
}