牛客网巅峰赛:牛牛的fib序列

根据牛牛的定义,斐波那契数列呈现出6为周期的循环特性。通过计算初始值a和b确定的前六个数,可以找到f(n) % 1000000007的值。题解提供了从f(1)和f(2)推导出f(n)的方法,解决给定n值的问题。
摘要由CSDN通过智能技术生成

题目

牛牛重新定义了斐波那契数列,牛牛定义f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b, 现在给定初始值 a, b,现在求第n项f(n)%1000000007的值。
其中 1<=|x|, |y|, n<=10^9
示例1
输入:1,2,3
输出:1
说明:f(2)=f(3)+f(1), 所以f(3) = f(2)-f(1)=2-1=1
示例2
输入:-1,-2,3
输出:1000000006
说明:同样例1:f(3)=-1%1000000007=1000000006
备注:
最终的答案应是一个非负整数,如-1 % 1000000007 = 1000000006

题解

这道题看上去比较复杂,其实本质上是一个以6为周期的数组
∵ f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b;
∴ f(n+1) = f(n) - f(n-1);
f(1)=a; f(2)=b; f(3) = b-a; f(4) = -a; f(5) = -b; f(6) = a-b;f(7) = a…
可知,该数列是以6为周期的循环数列。
故只需求出前六个数字即可。

import java.util.*;
public class Solution {
    /**
     * 
     * @param a int整型 
     * @param b int整型 
     * @param n int整型 
     * @return int整型
     */
    public int solve (int a, int b, int n) {
        // write code here
        int MOD = 1000000007;
        int result = 0;
        switch(n%6) {
            case 0:
                result = (a-b) % MOD;
                break;
            case 1:
                result = a % MOD;
                break;
            case 2:
                result = b % MOD;
                break;
            case 3:
                result = (b-a) % MOD;
                break;
            case 4:
                result = (-a) % MOD;
                break;
            case 5:
                result = (-b) % MOD;
                break;
        }
        if(result < 0) {
            result += MOD;
        }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值