机器学习中对传染病的数学建模和多元模型的简述

本文简要介绍了机器学习在传染病数学建模中的应用,包括模型假设的方法,如对传染病传播的数学建模,通过参数β和γ表示易感人群的感染几率和康复几率。此外,还探讨了多元模型的概念,以房价预测为例,解释如何考虑多个自变量如房龄和地段对预测目标的影响。
摘要由CSDN通过智能技术生成
模型假设的方法
  • 数据可视化建模;
  • 数学建模;

数据可视化建模

  • 在数据分析中被称作:探索性数据分析;
  • 高尔顿的身高回归定律;

数学建模

  • 最直接最科学的建模方法;
对传染病传播的数学建模
  • 参数
    • 地区总人口为N(已知常数)
    • 易感人群(Susceptible),记作:S或者S(t);
    • 感染人群(Infectious),记作:I或者I(t);
    • 康复人群(Recovered),记作:R或者R(t);
  • 则有以下数据关系:
    • S = N - I
    • I(t) = di/dt = β(I/N)S - γI
      • 该式表示每天新增的感染人数;
      • β:未知参数;与(I/N)的乘积为易感人群的感染几率;
      • γ:未知参数;为感染人群的康复几率;
  • 两式联立求解得I(t)的表达式:
    • I(0)表示初始感染人数;
  • 将收集到的该地区一段时间逐日数据报表作为输入数据,对该模型进行训练,得到最优数据β*和γ*,使用最小二乘法求解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世澈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值