模型假设的方法
- 数据可视化建模;
- 数学建模;
数据可视化建模
- 在数据分析中被称作:探索性数据分析;
- 高尔顿的身高回归定律;
数学建模
- 最直接最科学的建模方法;
对传染病传播的数学建模
- 参数
- 地区总人口为N(已知常数)
- 易感人群(Susceptible),记作:S或者S(t);
- 感染人群(Infectious),记作:I或者I(t);
- 康复人群(Recovered),记作:R或者R(t);
- 则有以下数据关系:
- S = N - I
- I(t) = di/dt = β(I/N)S - γI
- 该式表示每天新增的感染人数;
- β:未知参数;与(I/N)的乘积为易感人群的感染几率;
- γ:未知参数;为感染人群的康复几率;
- 两式联立求解得I(t)的表达式:
- I(0)表示初始感染人数;
- 将收集到的该地区一段时间逐日数据报表作为输入数据,对该模型进行训练,得到最优数据β*和γ*,使用最小二乘法求解