python制作甘特图的基本知识(附Demo)

前言

甘特图是一种常见的项目管理工具,用于表示项目任务的时间进度

直观地看到项目的各个任务在时间上的分布和进度

常用的绘制甘特图的工具是 matplotlib 和 plotly

主要以Demo的形式展示

1. matplotlib

功能强大的绘图库,适合制作静态的甘特图

import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.dates as mdates

# 创建数据
tasks = [
    {"Task": "Task A", "Start": "2024-01-01", "End": "2024-01-05"},
    {"Task": "Task B", "Start": "2024-01-02", "End": "2024-01-07"},
    {"Task": "Task C", "Start": "2024-01-08", "End": "2024-01-10"},
]

# 将数据转换为 DataFrame
df = pd.DataFrame(tasks)

# 转换日期
df["Start"] = pd.to_datetime(df["Start"])
df["End"] = pd.to_datetime(df["End"])

# 创建图形和轴
fig, ax = plt.subplots(figsize=(10, 6))

# 绘制条形图
for index, row in df.iterrows():
    ax.barh(row["Task"], (row["End"] - row["Start"]).days, left=row["Start"], color="skyblue")

# 设置日期格式
ax.xaxis.set_major_locator(mdates.DayLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))

# 设置标题和标签
plt.title("Gantt Chart")
plt.xlabel("Date")
plt.ylabel("Tasks")

# 显示图形
plt.show()

截图如下:

在这里插入图片描述

带有不同颜色的甘特图

import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.dates as mdates

# 创建数据
tasks = [
    {"Task": "Task A", "Start": "2024-01-01", "End": "2024-01-05", "Color": "skyblue"},
    {"Task": "Task B", "Start": "2024-01-02", "End": "2024-01-07", "Color": "lightgreen"},
    {"Task": "Task C", "Start": "2024-01-08", "End": "2024-01-10", "Color": "lightcoral"},
]

# 将数据转换为 DataFrame
df = pd.DataFrame(tasks)

# 转换日期
df["Start"] = pd.to_datetime(df["Start"])
df["End"] = pd.to_datetime(df["End"])

# 创建图形和轴
fig, ax = plt.subplots(figsize=(10, 6))

# 绘制条形图
for index, row in df.iterrows():
    ax.barh(row["Task"], (row["End"] - row["Start"]).days, left=row["Start"], color=row["Color"])

# 设置日期格式
ax.xaxis.set_major_locator(mdates.DayLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))

# 设置标题和标签
plt.title("Gantt Chart with Different Colors")
plt.xlabel("Date")
plt.ylabel("Tasks")

# 显示图形
plt.show()

截图如下:

在这里插入图片描述

2. plotly

交互式绘图库,适合制作动态甘特图

import plotly.express as px
import pandas as pd

# 创建数据
tasks = [
    {"Task": "Task A", "Start": "2024-01-01", "Finish": "2024-01-05"},
    {"Task": "Task B", "Start": "2024-01-02", "Finish": "2024-01-07"},
    {"Task": "Task C", "Start": "2024-01-08", "Finish": "2024-01-10"},
]

# 将数据转换为 DataFrame
df = pd.DataFrame(tasks)

# 使用 plotly 绘制甘特图
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", title="Gantt Chart")
fig.update_yaxes(categoryorder="total ascending")

# 显示图形
fig.show()

截图如下:

在这里插入图片描述

带有任务分组的甘特图

import plotly.express as px
import pandas as pd

# 创建数据
tasks = [
    {"Task": "Task A1", "Start": "2024-01-01", "Finish": "2024-01-05", "Group": "Group A"},
    {"Task": "Task A2", "Start": "2024-01-06", "Finish": "2024-01-10", "Group": "Group A"},
    {"Task": "Task B1", "Start": "2024-01-02", "Finish": "2024-01-07", "Group": "Group B"},
    {"Task": "Task B2", "Start": "2024-01-08", "Finish": "2024-01-12", "Group": "Group B"},
]

# 将数据转换为 DataFrame
df = pd.DataFrame(tasks)

# 使用 plotly 绘制甘特图
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Group", title="Gantt Chart with Groups")
fig.update_yaxes(categoryorder="total ascending")

# 显示图形
fig.show()

截图如下:

在这里插入图片描述

### 使用Python创建甘特图的方法 #### 方法一:使用JFreeChart的Java实现转换为Python接口 对于希望利用成熟图表库的开发者来说,`ChartFactory.createGanttChart`提供了便捷的方式生成甘特图[^1]。然而此方法主要适用于Java环境,在Python环境中可寻找类似的高级封装库或者通过JPype等工具调用Java代码。 #### 方法二:自定义绘制逻辑 另一种方式是完全自主开发绘图逻辑,这给予使用者极大的灵活性去定制化视觉效果。特别是当涉及到特定业务需求时,这种方法尤为有用。例如,为了计算每个月的确切工作日数量,可以借助于Python内置的标准库`calendar`来辅助完成这一目标[^2]。 ```python import calendar def get_days_in_month(year, month): _, num_days = calendar.monthrange(year, month) return num_days ``` #### 方法三:采用专门针对Python设计的专业级甘特图库——ChartDirector ChartDirector是一个功能强大的商业图表组件,支持多种编程语言包括Python,并且拥有良好的文档和支持服务。一旦按照官方指南正确安装了该库之后,便可以通过简单的API调用来快速构建复杂的甘特图实例[^3]。 ```python from pychartdir import * # 创建一个GanttChart对象 c = GanttChart(600, 300) # 设置标题 c.addTitle("Project Schedule", "arialbd.ttf", 12) # 添加日期刻度轴 (假设项目周期是从2023年1月至同年7月) c.setTimeScale(DateAxis(c), Chart.CTime(2023, 1, 1), Chart.CTime(2023, 7, 1)) # 增加一些虚拟的任务条目作为演示用途 task_data = [ ["Task A", CDate(2023, 1, 5), CDate(2023, 2, 1)], ["Task B", CDate(2023, 2, 5), CDate(2023, 3, 15)] ] for task in task_data: c.addTask(task[0], task[1], task[2]) # 输出图像文件 c.makeChart("gantt.png") ``` 甘特图作为一种重要的项目管理可视化手段,能够清晰地展现各项任务的时间跨度及其之间的依赖关系,有助于提高团队协作效率并优化资源分配策略[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农研究僧

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值