**
题目描述
**:1号和2号格子涂蓝色,3号格子涂红色,4号格子涂蓝色,5号格子涂红色,6号和7号格子涂蓝色,8号格子涂红色。如按照这个方法涂的话,他需要6步(1号格和2号格可以一起涂,6号和7号可以一起涂)。但是他也可以将1~7号图上蓝色,再将3号涂成红色,将5号涂成红色,将8号涂成红色,则步数最少,为4次。但是,眼下有500000个格子,因此,我们希望以最有效的方式执行上述操作。帮助牛牛写一个程序,找出用特定颜色绘制每个格子所需的最少操作次数。
**
输入描述
**:
第一行 给出了需要着色的格子数N
第二行,N个字符按顺序给出,没有空格。每个字母表示第i个格子应该涂成什么涂颜色,‘R’代表红色和‘B’代表蓝色。(没有其他字符)。
1<=N<=500000
示例1:
输入
8
BBRBRBBR
输出
4
示例2:
输入
4
RRRR
输出
1
**
个人思路:
**
思路1、因为连续的红色和蓝色都可视做一个色块,那么只要统计出蓝色块和红色块,哪个色块的数量最少就行
思路2、统计色块的思想实际上就是计算它们的“上升沿”或者“下降沿”
分析:思路二只需进行一次遍历就能解决,且所用标志位较少。
**
Python解题:
**
最终通过率只有12.5%,时间复杂度和空间复杂度均满足要求,想不明白为什么通过率这么低?经过很多样本的测试,结果都是对的。除非出现了我没有考虑到的涂法或者情况。
if __name__ == '__main__':
N = int(input()) # 输入8
RB = input().upper()# 输入BBRBRBBR
if N != len(RB):
print("长度不符合")
cnt = 0
if RB[-1] == 'R':
cnt = len(RB.split("BR"))
else:
cnt = len(RB.split("RB"))
print(cnt)