面经—22应届通过集12和NLP5拿到的年薪40万:NLP需要掌握的技能点

    本人双一流应届硕士,在校科研对某一点的知识专研深度,但是在知识的广度上掌握不够,所以希望接触更广泛全面的知识,从而希望系统的学习后可以更好的进行领域的深究,最终参加了七月在线机器学习集训营12,以及NLP5的课程,课程对我的帮助挺大的,也确实如我想的,有了系统的知识后可以更好地深入点的研究,也给我铺垫了不错的基础。

算法岗需要掌握的一些东西:

1、首先传统机器学习与深度学习的基础是需要牢固的

    基础知识就包括了领域中的各种模型(原理,公式,推导,应用);

    常用的衡量标准以及数学公式(就是有公式的东西都要理解并且能推导,例如blue,F1、各种代价函数以及optimizer等等);

    模型、网络之间的比较和各自实际应用场景;

    特征工程方面的知识,包括了传统机器学习的一些数据处理方式,深度学习领域的数据处理方式,遇到脏数据怎么办,数据不平衡,OOV怎么处理等等。

2、leetcode是基本的要求

多做题可以提升代码能力,200道差不多(中等难度题即可)。

3、面试掌握的知识点(下面列举的每个点都可以深究):

    条件熵、信息熵、信息增益、交叉熵、KL散度、信息增益率之间的联系(理解了能够白纸写出来);

    TF-IDF、blue、F1-score、ROC、perplexity;

    基本数据与文本数据增强方法;

    模型(rnn、gru、lstm、transformer、bert、elmo、HMM、crf、svm、KNN、Kmeans、xgboost、decision_tree等);

    batch_norm、layer_norm区别与联系;

    weight初始化方式以及为什么这样初始化;

    optimizer(SGD、MSGD、AdapGrad、Momentum、RMSprop、Adam);

    文本相似度的计算方法;

    激活函数、损失函数;

4、最后,项目是重点

比如,需要有实际的应用场景,最好两个以上的解决方案,项目的改进策略

其次项目中数据的分布情况、拿到数据第一时间干了什么(观察其分布情况、观察是否有非正常数据、需要怎么处理)、某个label下的数据太少怎么办(衍生出新的领域在项目可以做,可以参考一些文本增强的论文)。

    最后找工作贵在坚持吧,祝愿大家能够找到满意的工作。

转自七月在线学员分享:七月在线 - 智能时代在线职教平台

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七月在线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值