Chapter2_EX1

已知LTI系统的输入f(t)和输出y(t)的关系为:
y ( t ) = ∫ 0 ∞ e − 2 τ f ( t − τ )   d τ y(t) = \int_{0}^\infty e^{-2 \tau }f(t-\tau) \,d\tau y(t)=0e2τf(tτ)dτ
求该系统的冲激响应h(t),并判断该系统的因果稳定性。

解之方法一:可以用卷积的公式,为了使积分下限为 − ∞ -\infty ,可以将 e − 2 τ e^{-2 \tau } e2τ写成 e − 2 τ u ( τ ) e^{-2 \tau }u(\tau) e2τu(τ)。这时,该系统的输入输出关系可以写成:
y ( t ) = ∫ − ∞ ∞ e − 2 τ u ( τ ) f ( t − τ )   d τ = e − 2 t u ( t ) ∗ f ( t ) = h ( t ) ∗ f ( t ) y(t) = \int_{-\infty}^\infty e^{-2 \tau }u(\tau)f(t-\tau) \,d\tau=e^{-2t }u(t)*f(t)=h(t)*f(t) y(t)=e2τu(τ)f(tτ)dτ=e2tu(t)f(t)=h(t)f(t)
于是得到: h ( t ) = e − 2 t u ( t ) h(t)=e^{-2t }u(t) h(t)=e2tu(t)

方法二:令 f ( t ) = δ ( t ) f(t)=\delta(t) f(t)=δ(t),带入公式得到:
h ( t ) = ∫ 0 ∞ e − 2 τ δ ( t − τ )   d τ = ∫ 0 ∞ e − 2 t δ ( t − τ ) d τ = e − 2 t u ( t ) h(t) = \int_{0}^\infty e^{-2 \tau }\delta(t-\tau) \,d\tau=\int_{0}^\infty e^{-2t}\delta(t-\tau)d\tau=e^{-2t}u(t) h(t)=0e2τδ(tτ)dτ=0e2tδ(tτ)dτ=e2tu(t)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值