读书笔记 AI超入门-关于深度学习

深度学习起源于简单的感知机模型,通过增加偏差项增强模型的泛化能力。随着多层神经网络和激活函数的引入,深度学习得以形成。尽管其高精度的原因尚未完全明确,但增加隐藏层能提升分类性能。然而,深度学习对大量数据的需求是其一大挑战,数据量需达到一定阈值以保证模型的有效训练。深度学习主要关注模型参数的优化和构建可调整的函数模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于深度学习
深度学习源于感知机,增加偏差项,使得模型更一般化;多层感知机+ 改变“激活函数“实现微调得到神经网络,多层神经网络得到深度学习网络。
深度学习的学习精度很高,但原因不明,增加隐层可以提高分类精度,但原因不明。深度学习的另外一个难点是对数据数量要求很高。虽然并不是数据越多越好,但有一个最低限度。
深度学习的对象是模型(函数)的参数,和带参数的函数(模型)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值