代码随想录算法训练营第十三天|239. 滑动窗口最大值、347.前 K 个高频元素

文章介绍了如何使用单调队列和优先级队列(小顶堆)解决LeetCode中的两个问题:239.滑动窗口最大值和347.前K个高频元素。通过动态维护窗口内的最大值和元素频率,确保时间复杂度优于O(nlogn)。
摘要由CSDN通过智能技术生成

目录

一、239. 滑动窗口最大值

思路

二、347.前 K 个高频元素

思路


 

一、239. 滑动窗口最大值

给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

思路

我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。

队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。

其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。

那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。

设计单调队列的时候,pop,和push操作要保持如下规则:

  1. pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
  2. push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止

保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。

//解法一
//自定义数组
class MyQueue {
    Deque<Integer> deque = new LinkedList<>();
    //弹出元素时,比较当前要弹出的数值是否等于队列出口的数值,如果相等则弹出
    //同时判断队列当前是否为空
    void poll(int val) {
        if (!deque.isEmpty() && val == deque.peek()) {
            deque.poll();
        }
    }
    //添加元素时,如果要添加的元素大于入口处的元素,就将入口元素弹出
    //保证队列元素单调递减
    //比如此时队列元素3,1,2将要入队,比1大,所以1弹出,此时队列:3,2
    void add(int val) {
        while (!deque.isEmpty() && val > deque.getLast()) {
            deque.removeLast();
        }
        deque.add(val);
    }
    //队列队顶元素始终为最大值
    int peek() {
        return deque.peek();
    }
}

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (nums.length == 1) {
            return nums;
        }
        int len = nums.length - k + 1;
        //存放结果元素的数组
        int[] res = new int[len];
        int num = 0;
        //自定义队列
        MyQueue myQueue = new MyQueue();
        //先将前k的元素放入队列
        for (int i = 0; i < k; i++) {
            myQueue.add(nums[i]);
        }
        res[num++] = myQueue.peek();
        for (int i = k; i < nums.length; i++) {
            //滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
            myQueue.poll(nums[i - k]);
            //滑动窗口加入最后面的元素
            myQueue.add(nums[i]);
            //记录对应的最大值
            res[num++] = myQueue.peek();
        }
        return res;
    }
}

//解法二
//利用双端队列手动实现单调队列
/**
 * 用一个单调队列来存储对应的下标,每当窗口滑动的时候,直接取队列的头部指针对应的值放入结果集即可
 * 单调队列类似 (tail -->) 3 --> 2 --> 1 --> 0 (--> head) (右边为头结点,元素存的是下标)
 */
class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        ArrayDeque<Integer> deque = new ArrayDeque<>();
        int n = nums.length;
        int[] res = new int[n - k + 1];
        int idx = 0;
        for(int i = 0; i < n; i++) {
            // 根据题意,i为nums下标,是要在[i - k + 1, i] 中选到最大值,只需要保证两点
            // 1.队列头结点需要在[i - k + 1, i]范围内,不符合则要弹出
            while(!deque.isEmpty() && deque.peek() < i - k + 1){
                deque.poll();
            }
            // 2.既然是单调,就要保证每次放进去的数字要比末尾的都大,否则也弹出
            while(!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
                deque.pollLast();
            }

            deque.offer(i);

            // 因为单调,当i增长到符合第一个k范围的时候,每滑动一步都将队列头节点放入结果就行了
            if(i >= k - 1){
                res[idx++] = nums[deque.peek()];
            }
        }
        return res;
    }
}

二、347.前 K 个高频元素

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。

示例 1:

  • 输入: nums = [1,1,1,2,2,3], k = 2
  • 输出: [1,2]

示例 2:

  • 输入: nums = [1], k = 1
  • 输出: [1]

提示:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 $O(n \log n)$ , n 是数组的大小。
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
  • 你可以按任意顺序返回答案。

思路

这道题目主要涉及到如下三块内容:

  1. 要统计元素出现频率
  2. 对频率排序
  3. 找出前K个高频元素

首先统计元素出现的频率,这一类的问题可以使用map来进行统计。

然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列

什么是优先级队列呢?

其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。

而且优先级队列内部元素是自动依照元素的权值排列。

我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 优先级队列,为了避免复杂 api 操作,pq 存储数组
        // lambda 表达式设置优先级队列从大到小存储 o1 - o2 为从小到大,o2 - o1 反之
        PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[1] - o2[1]);
        int[] res = new int[k]; // 答案数组为 k 个元素
        Map<Integer, Integer> map = new HashMap<>(); // 记录元素出现次数
        for (int num : nums) map.put(num, map.getOrDefault(num, 0) + 1);
        for (var x : map.entrySet()) { // entrySet 获取 k-v Set 集合
            // 将 kv 转化成数组
            int[] tmp = new int[2];
            tmp[0] = x.getKey();
            tmp[1] = x.getValue();
            pq.offer(tmp);
            // 下面的代码是根据小根堆实现的,我只保留优先队列的最后的k个,只要超出了k我就将最小的弹出,剩余的k个就是答案
            if(pq.size() > k) {
                pq.poll();
            }
        }
        for (int i = 0; i < k; i++) {
            res[i] = pq.poll()[0]; // 获取优先队列里的元素
        }
        return res;
    }
}
/*Comparator接口说明:
 * 返回负数,形参中第一个参数排在前面;返回正数,形参中第二个参数排在前面
 * 对于队列:排在前面意味着往队头靠
 * 对于堆(使用PriorityQueue实现):从队头到队尾按从小到大排就是最小堆(小顶堆),
 *                                从队头到队尾按从大到小排就是最大堆(大顶堆)--->队头元素相当于堆的根节点
 * */
class Solution {
    //解法1:基于大顶堆实现
    public int[] topKFrequent1(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
        for (int num : nums) {
            map.put(num, map.getOrDefault(num,0) + 1);
        }
        //在优先队列中存储二元组(num, cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从大到小排,出现次数最多的在队头(相当于大顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair2[1] - pair1[1]);
        for (Map.Entry<Integer, Integer> entry : map.entrySet()) {//大顶堆需要对所有元素进行排序
            pq.add(new int[]{entry.getKey(), entry.getValue()});
        }
        int[] ans = new int[k];
        for (int i = 0; i < k; i++) { //依次从队头弹出k个,就是出现频率前k高的元素
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
    //解法2:基于小顶堆实现
    public int[] topKFrequent2(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
        for (int num : nums) {
            map.put(num, map.getOrDefault(num, 0) + 1);
        }
        //在优先队列中存储二元组(num, cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair1[1] - pair2[1]);
        for (Map.Entry<Integer, Integer> entry : map.entrySet()) { //小顶堆只需要维持k个元素有序
            if (pq.size() < k) { //小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(), entry.getValue()});
            } else {
                if (entry.getValue() > pq.peek()[1]) { //当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll(); //弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(), entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for (int i = k - 1; i >= 0; i--) { //依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值